Deep Survival Analysis With Latent Clustering and Contrastive Learning

聚类分析 计算机科学 人工智能 深度学习 自然语言处理
作者
C.Y. Cui,Yongqiang Tang,Wensheng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3090-3101 被引量:6
标识
DOI:10.1109/jbhi.2024.3362850
摘要

Survival analysis is employed to analyze the time before the event of interest occurs, which is broadly applied in many fields. The existence of censored data with incomplete supervision information about survival outcomes is one key challenge in survival analysis tasks. Although some progress has been made on this issue recently, the present methods generally treat the instances as separate ones while ignoring their potential correlations, thus rendering unsatisfactory performance. In this study, we propose a novel Deep Survival Analysis model with latent Clustering and Contrastive learning (DSACC). Specifically, we jointly optimize representation learning, latent clustering and survival prediction in a unified framework. In this way, the clusters distribution structure in latent representation space is revealed, and meanwhile the structure of the clusters is well incorporated to improve the ability of survival prediction. Besides, by virtue of the learned clusters, we further propose a contrastive loss function, where the uncensored data in each cluster are set as anchors, and the censored data are treated as positive/negative sample pairs according to whether they belong to the same cluster or not. This design enables the censored data to make full use of the supervision information of the uncensored samples. Through extensive experiments on four popular clinical datasets, we demonstrate that our proposed DSACC achieves advanced performance in terms of both C-index (0.6722, 0.6793, 0.6350, and 0.7943) and Integrated Brier Score (IBS) (0.1616, 0.1826, 0.2028, and 0.1120).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang08完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
煎饼完成签到,获得积分10
1秒前
1秒前
HAo发布了新的文献求助30
1秒前
幸福妙柏发布了新的文献求助10
1秒前
科目三应助简单的鸡翅采纳,获得10
1秒前
dd36完成签到,获得积分10
2秒前
所所应助美丽的又菡采纳,获得10
2秒前
2秒前
2秒前
hiter发布了新的文献求助30
2秒前
SciGPT应助坚定的红酒采纳,获得10
2秒前
3秒前
小魔女完成签到,获得积分10
3秒前
3秒前
wxxx发布了新的文献求助10
4秒前
didi完成签到,获得积分20
4秒前
4秒前
4秒前
踏实的谷蕊完成签到,获得积分10
4秒前
4秒前
4秒前
Ain完成签到 ,获得积分20
4秒前
奋斗土豆完成签到,获得积分10
4秒前
cc发布了新的文献求助30
5秒前
cc完成签到,获得积分10
5秒前
王宇航发布了新的文献求助10
5秒前
12完成签到,获得积分10
5秒前
煎饼发布了新的文献求助10
5秒前
112完成签到,获得积分10
5秒前
CodeCraft应助Wang0102采纳,获得10
5秒前
冷艳绿草完成签到,获得积分10
5秒前
思源应助dongqin采纳,获得10
6秒前
wenge发布了新的文献求助10
6秒前
ZHY2023完成签到,获得积分20
7秒前
Mrmiss666发布了新的文献求助10
7秒前
LvCR发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688