Deep Survival Analysis With Latent Clustering and Contrastive Learning

聚类分析 计算机科学 人工智能 深度学习 自然语言处理
作者
C.Y. Cui,Yongqiang Tang,Wensheng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3090-3101 被引量:2
标识
DOI:10.1109/jbhi.2024.3362850
摘要

Survival analysis is employed to analyze the time before the event of interest occurs, which is broadly applied in many fields. The existence of censored data with incomplete supervision information about survival outcomes is one key challenge in survival analysis tasks. Although some progress has been made on this issue recently, the present methods generally treat the instances as separate ones while ignoring their potential correlations, thus rendering unsatisfactory performance. In this study, we propose a novel Deep Survival Analysis model with latent Clustering and Contrastive learning (DSACC). Specifically, we jointly optimize representation learning, latent clustering and survival prediction in a unified framework. In this way, the clusters distribution structure in latent representation space is revealed, and meanwhile the structure of the clusters is well incorporated to improve the ability of survival prediction. Besides, by virtue of the learned clusters, we further propose a contrastive loss function, where the uncensored data in each cluster are set as anchors, and the censored data are treated as positive/negative sample pairs according to whether they belong to the same cluster or not. This design enables the censored data to make full use of the supervision information of the uncensored samples. Through extensive experiments on four popular clinical datasets, we demonstrate that our proposed DSACC achieves advanced performance in terms of both C-index ( 0.6722, 0.6793, 0.6350 , and 0.7943 ) and Integrated Brier Score (IBS) ( 0.1616, 0.1826, 0.2028 , and 0.1120 ) .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毛子涵发布了新的文献求助10
刚刚
smottom应助宝宝言兼采纳,获得10
1秒前
yuanling完成签到 ,获得积分10
1秒前
活力的小猫咪完成签到 ,获得积分10
3秒前
爆米花应助allofme采纳,获得10
3秒前
4秒前
6秒前
科研鸟发布了新的文献求助10
7秒前
万能图书馆应助怕黑向卉采纳,获得10
9秒前
9秒前
科目三应助猪猪hero采纳,获得10
9秒前
我是老大应助淡淡夕阳采纳,获得10
11秒前
小旭vip完成签到 ,获得积分10
11秒前
burningzmz发布了新的文献求助10
13秒前
喜悦的母鸡完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
bkagyin应助zzz采纳,获得10
18秒前
汉堡包应助包包酱采纳,获得10
19秒前
毛子涵完成签到,获得积分10
20秒前
高工发布了新的文献求助10
21秒前
怕黑向卉发布了新的文献求助10
21秒前
胡图图发布了新的文献求助10
21秒前
21秒前
好好学习发布了新的文献求助30
22秒前
22秒前
23秒前
路漫漫123完成签到,获得积分10
24秒前
24秒前
24秒前
小菜狗完成签到,获得积分20
25秒前
26秒前
我爱乒乓球完成签到,获得积分10
26秒前
人机一号完成签到,获得积分10
26秒前
逆时针发布了新的文献求助10
26秒前
南风发布了新的文献求助10
27秒前
满眼星辰发布了新的文献求助10
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403