Deep Survival Analysis With Latent Clustering and Contrastive Learning

聚类分析 计算机科学 人工智能 深度学习 自然语言处理
作者
C.Y. Cui,Yongqiang Tang,Wensheng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3090-3101 被引量:6
标识
DOI:10.1109/jbhi.2024.3362850
摘要

Survival analysis is employed to analyze the time before the event of interest occurs, which is broadly applied in many fields. The existence of censored data with incomplete supervision information about survival outcomes is one key challenge in survival analysis tasks. Although some progress has been made on this issue recently, the present methods generally treat the instances as separate ones while ignoring their potential correlations, thus rendering unsatisfactory performance. In this study, we propose a novel Deep Survival Analysis model with latent Clustering and Contrastive learning (DSACC). Specifically, we jointly optimize representation learning, latent clustering and survival prediction in a unified framework. In this way, the clusters distribution structure in latent representation space is revealed, and meanwhile the structure of the clusters is well incorporated to improve the ability of survival prediction. Besides, by virtue of the learned clusters, we further propose a contrastive loss function, where the uncensored data in each cluster are set as anchors, and the censored data are treated as positive/negative sample pairs according to whether they belong to the same cluster or not. This design enables the censored data to make full use of the supervision information of the uncensored samples. Through extensive experiments on four popular clinical datasets, we demonstrate that our proposed DSACC achieves advanced performance in terms of both C-index (0.6722, 0.6793, 0.6350, and 0.7943) and Integrated Brier Score (IBS) (0.1616, 0.1826, 0.2028, and 0.1120).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi完成签到,获得积分10
刚刚
自觉的书蝶完成签到,获得积分10
1秒前
张志超发布了新的文献求助10
2秒前
2秒前
3秒前
维尼完成签到,获得积分10
4秒前
汉堡包应助安详夏彤采纳,获得10
4秒前
温乐松发布了新的文献求助10
5秒前
深情安青应助ohooo采纳,获得10
6秒前
6秒前
7秒前
桂d发布了新的文献求助10
7秒前
axt完成签到,获得积分10
7秒前
NotToday发布了新的文献求助10
7秒前
淡定访琴发布了新的文献求助10
8秒前
9秒前
9秒前
lu2025发布了新的文献求助10
11秒前
axt发布了新的文献求助10
11秒前
SciGPT应助认真的向卉采纳,获得10
12秒前
12秒前
13秒前
淡定访琴完成签到,获得积分10
13秒前
迟暮完成签到 ,获得积分10
13秒前
英姑应助NotToday采纳,获得10
13秒前
vicky发布了新的文献求助10
14秒前
xinyuxie发布了新的文献求助20
14秒前
Ava应助kate采纳,获得10
14秒前
心理学四完成签到,获得积分10
15秒前
七七完成签到 ,获得积分10
16秒前
poplin发布了新的文献求助10
16秒前
未闻明日之花完成签到,获得积分10
16秒前
ohooo发布了新的文献求助10
17秒前
17秒前
怡然凌柏完成签到 ,获得积分10
17秒前
18秒前
xinyuxie完成签到,获得积分10
20秒前
大个应助lu2025采纳,获得10
21秒前
zhaojiachao发布了新的文献求助10
22秒前
田様应助axt采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646393
求助须知:如何正确求助?哪些是违规求助? 4771261
关于积分的说明 15034850
捐赠科研通 4805220
什么是DOI,文献DOI怎么找? 2569528
邀请新用户注册赠送积分活动 1526533
关于科研通互助平台的介绍 1485849