Deep Survival Analysis With Latent Clustering and Contrastive Learning

聚类分析 计算机科学 人工智能 深度学习 自然语言处理
作者
C.Y. Cui,Yongqiang Tang,Wensheng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3090-3101 被引量:6
标识
DOI:10.1109/jbhi.2024.3362850
摘要

Survival analysis is employed to analyze the time before the event of interest occurs, which is broadly applied in many fields. The existence of censored data with incomplete supervision information about survival outcomes is one key challenge in survival analysis tasks. Although some progress has been made on this issue recently, the present methods generally treat the instances as separate ones while ignoring their potential correlations, thus rendering unsatisfactory performance. In this study, we propose a novel Deep Survival Analysis model with latent Clustering and Contrastive learning (DSACC). Specifically, we jointly optimize representation learning, latent clustering and survival prediction in a unified framework. In this way, the clusters distribution structure in latent representation space is revealed, and meanwhile the structure of the clusters is well incorporated to improve the ability of survival prediction. Besides, by virtue of the learned clusters, we further propose a contrastive loss function, where the uncensored data in each cluster are set as anchors, and the censored data are treated as positive/negative sample pairs according to whether they belong to the same cluster or not. This design enables the censored data to make full use of the supervision information of the uncensored samples. Through extensive experiments on four popular clinical datasets, we demonstrate that our proposed DSACC achieves advanced performance in terms of both C-index (0.6722, 0.6793, 0.6350, and 0.7943) and Integrated Brier Score (IBS) (0.1616, 0.1826, 0.2028, and 0.1120).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
01259完成签到 ,获得积分10
刚刚
蔡晓华完成签到,获得积分10
2秒前
美好灵寒完成签到 ,获得积分10
3秒前
6秒前
9秒前
tiany完成签到,获得积分10
22秒前
22秒前
青柠完成签到 ,获得积分10
28秒前
看文献完成签到,获得积分10
28秒前
33秒前
震动的鹏飞完成签到 ,获得积分10
33秒前
35秒前
洁净的幼珊完成签到,获得积分10
36秒前
简单应助科研通管家采纳,获得10
52秒前
萧萧应助科研通管家采纳,获得10
52秒前
shouz应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
简单应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
zhixue2025完成签到 ,获得积分10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
简单应助科研通管家采纳,获得10
52秒前
ycd完成签到,获得积分10
52秒前
53秒前
YufeiLiu发布了新的文献求助10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
缺口口完成签到 ,获得积分10
1分钟前
dddd完成签到 ,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
1分钟前
zhouyms完成签到,获得积分10
1分钟前
赘婿应助无所谓的啦采纳,获得10
1分钟前
情怀应助无所谓的啦采纳,获得10
1分钟前
ding应助无所谓的啦采纳,获得10
1分钟前
李健应助无所谓的啦采纳,获得10
1分钟前
1分钟前
1分钟前
AM发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481712
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559