亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Survival Analysis With Latent Clustering and Contrastive Learning

聚类分析 计算机科学 人工智能 深度学习 自然语言处理
作者
C.Y. Cui,Yongqiang Tang,Wensheng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3090-3101 被引量:6
标识
DOI:10.1109/jbhi.2024.3362850
摘要

Survival analysis is employed to analyze the time before the event of interest occurs, which is broadly applied in many fields. The existence of censored data with incomplete supervision information about survival outcomes is one key challenge in survival analysis tasks. Although some progress has been made on this issue recently, the present methods generally treat the instances as separate ones while ignoring their potential correlations, thus rendering unsatisfactory performance. In this study, we propose a novel Deep Survival Analysis model with latent Clustering and Contrastive learning (DSACC). Specifically, we jointly optimize representation learning, latent clustering and survival prediction in a unified framework. In this way, the clusters distribution structure in latent representation space is revealed, and meanwhile the structure of the clusters is well incorporated to improve the ability of survival prediction. Besides, by virtue of the learned clusters, we further propose a contrastive loss function, where the uncensored data in each cluster are set as anchors, and the censored data are treated as positive/negative sample pairs according to whether they belong to the same cluster or not. This design enables the censored data to make full use of the supervision information of the uncensored samples. Through extensive experiments on four popular clinical datasets, we demonstrate that our proposed DSACC achieves advanced performance in terms of both C-index (0.6722, 0.6793, 0.6350, and 0.7943) and Integrated Brier Score (IBS) (0.1616, 0.1826, 0.2028, and 0.1120).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arizaki7发布了新的文献求助10
5秒前
深情傲柔完成签到,获得积分10
6秒前
9秒前
12秒前
21秒前
ceeray23发布了新的文献求助20
24秒前
32秒前
444完成签到,获得积分20
33秒前
余念安完成签到 ,获得积分10
35秒前
fire完成签到 ,获得积分10
37秒前
Shawn发布了新的文献求助10
37秒前
41秒前
42秒前
wxx发布了新的文献求助10
46秒前
47秒前
坚定汝燕发布了新的文献求助10
53秒前
56秒前
57秒前
123完成签到,获得积分10
57秒前
1分钟前
共享精神应助酷酷海豚采纳,获得10
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
1分钟前
土豪的洋葱完成签到,获得积分10
1分钟前
复杂哲瀚完成签到 ,获得积分10
1分钟前
橘子味汽水完成签到 ,获得积分10
1分钟前
dxftx发布了新的文献求助10
1分钟前
fire完成签到 ,获得积分10
1分钟前
迟陌完成签到 ,获得积分10
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
清脆安南完成签到 ,获得积分10
1分钟前
Diamond完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
正己烷完成签到 ,获得积分10
1分钟前
乐生发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376293
求助须知:如何正确求助?哪些是违规求助? 4501376
关于积分的说明 14012859
捐赠科研通 4409135
什么是DOI,文献DOI怎么找? 2422067
邀请新用户注册赠送积分活动 1414854
关于科研通互助平台的介绍 1391729