P-AK-MCS: Parallel AK-MCS method for structural reliability analysis

功能(生物学) 蒙特卡罗方法 可靠性(半导体) 计算机科学 计算 克里金 算法 数学优化 点(几何) 应用数学 数学 机器学习 统计 功率(物理) 物理 几何学 量子力学 进化生物学 生物
作者
Zhao Zhao,Zhao‐Hui Lu,Yan‐Gang Zhao
出处
期刊:Probabilistic Engineering Mechanics [Elsevier]
卷期号:75: 103573-103573 被引量:9
标识
DOI:10.1016/j.probengmech.2023.103573
摘要

In recent years, the active learning reliability method that combines the Kriging model and Monte Carlo simulation (AK-MCS) has emerged as a promising approach due to its computational efficiency and accuracy. However, the commonly used learning functions, such as the expected feasibility function (EFF), U function, H function, and expected risk function (ERF), can only select one training point at each iteration which is time-wasteful when parallel computing is available. Therefore, this paper proposes a parallel active learning Kriging strategy, namely P-AK-MCS, for structural reliability analysis. By introducing an influence function that reflects the impact of the added point on the original learning function, four parallel learning functions are constructed: pseudo-U (PU) function, pseudo-EFF (PEFF), pseudo-H (PH) function, and pseudo-ERF (PERF). These functions aim to identify multiple training points at each iteration without requiring additional functional evaluations. The effectiveness of the proposed method is validated using four examples. The results demonstrate that compared to the standard AK-MCS, the proposed P-AK-MCS significantly reduces the number of computation loops and greatly decreases computational costs. Moreover, the total number of functional evaluations required is similar to that of the standard AK-MCS and remains insensitive to the number of multiple training points.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花根发布了新的文献求助10
刚刚
刚刚
xiaoyi发布了新的文献求助10
刚刚
刚刚
背后的飞阳完成签到 ,获得积分10
1秒前
奋斗的怀曼完成签到,获得积分10
1秒前
科研通AI6应助NETO采纳,获得10
1秒前
zik应助科研通管家采纳,获得10
1秒前
2秒前
大个应助科研通管家采纳,获得30
2秒前
嘿嘿应助aibai820采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
spc68应助科研通管家采纳,获得10
2秒前
Lucas应助斑马采纳,获得10
2秒前
niNe3YUE应助科研通管家采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
大模型应助赫连靖柔采纳,获得10
2秒前
niNe3YUE应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Stella应助科研通管家采纳,获得10
3秒前
3秒前
万能图书馆应助路人甲采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
BowieHuang应助研友_GZbV4Z采纳,获得10
3秒前
所所应助社恐小魏采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得20
3秒前
所所应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587661
求助须知:如何正确求助?哪些是违规求助? 4670874
关于积分的说明 14784407
捐赠科研通 4623392
什么是DOI,文献DOI怎么找? 2531379
邀请新用户注册赠送积分活动 1500063
关于科研通互助平台的介绍 1468151