清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

P-AK-MCS: Parallel AK-MCS method for structural reliability analysis

功能(生物学) 蒙特卡罗方法 可靠性(半导体) 计算机科学 计算 克里金 算法 数学优化 点(几何) 应用数学 数学 机器学习 统计 功率(物理) 物理 几何学 量子力学 进化生物学 生物
作者
Zhao Zhao,Zhao‐Hui Lu,Yan‐Gang Zhao
出处
期刊:Probabilistic Engineering Mechanics [Elsevier BV]
卷期号:75: 103573-103573 被引量:9
标识
DOI:10.1016/j.probengmech.2023.103573
摘要

In recent years, the active learning reliability method that combines the Kriging model and Monte Carlo simulation (AK-MCS) has emerged as a promising approach due to its computational efficiency and accuracy. However, the commonly used learning functions, such as the expected feasibility function (EFF), U function, H function, and expected risk function (ERF), can only select one training point at each iteration which is time-wasteful when parallel computing is available. Therefore, this paper proposes a parallel active learning Kriging strategy, namely P-AK-MCS, for structural reliability analysis. By introducing an influence function that reflects the impact of the added point on the original learning function, four parallel learning functions are constructed: pseudo-U (PU) function, pseudo-EFF (PEFF), pseudo-H (PH) function, and pseudo-ERF (PERF). These functions aim to identify multiple training points at each iteration without requiring additional functional evaluations. The effectiveness of the proposed method is validated using four examples. The results demonstrate that compared to the standard AK-MCS, the proposed P-AK-MCS significantly reduces the number of computation loops and greatly decreases computational costs. Moreover, the total number of functional evaluations required is similar to that of the standard AK-MCS and remains insensitive to the number of multiple training points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到 ,获得积分10
7秒前
Gary完成签到 ,获得积分10
10秒前
蒲蒲完成签到 ,获得积分10
12秒前
25秒前
小婷君发布了新的文献求助30
30秒前
小巧的柏柳完成签到 ,获得积分10
35秒前
36秒前
雪山飞龙完成签到,获得积分10
37秒前
陈_Ccc完成签到 ,获得积分10
38秒前
Rayoo发布了新的文献求助10
41秒前
wanci应助幽默滑板采纳,获得10
45秒前
小婷君完成签到,获得积分10
46秒前
46秒前
49秒前
医学僧发布了新的文献求助10
55秒前
老刘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
迪鸣完成签到,获得积分0
1分钟前
2分钟前
路过完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
racill完成签到 ,获得积分10
2分钟前
xiaosang0619完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
合适醉蝶完成签到 ,获得积分10
2分钟前
zhaoyu完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
myq完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
平淡访冬完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839