Enhancing Properties with Distortion: A Comparative Study of Two Iron Phosphide Fe2P Polymorphs

正交晶系 材料科学 铁磁性 相(物质) 微晶 结晶学 晶体结构 化学 磁化 冶金 磁场 物理 有机化学 量子力学
作者
Seongyoung Kong,Prashant Singh,Arka Sarkar,Gayatri Viswanathan,Yury V. Kolen’ko,Yaroslav Mudryk,D. D. Johnson,Kirill Kovnir
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (3): 1665-1677 被引量:7
标识
DOI:10.1021/acs.chemmater.3c03003
摘要

Iron phosphide (Fe2P) crystallizes in its own hexagonal crystal structure type (h-Fe2P). As found in meteorites, orthorhombic polymorph (o-Fe2P) was originally reported as a high-temperature and high-pressure phase. Recently, o-Fe2P was described as being stable at ambient pressure, yet no synthetic methods were developed for single-crystal growth or single-phase bulk powder synthesis. Here, we report a successful method for growing o-Fe2P single crystals and synthesizing phase-pure polycrystalline samples using tin-flux. In situ powder X-ray diffraction studies showed that the phase transition from o-Fe2P to h-Fe2P occurs at about 873 K, and below that temperature, the formation of the o-Fe2P phase is favored thermodynamically rather than kinetically. Systematic comparison of transport, magnetic, and electrocatalytic properties of both h-Fe2P and o-Fe2P phases showed a substantial impact of the crystal structure on properties. The orthorhombic structural distortion resulted in considerable changes in magnetic properties, with the o-Fe2P phase exhibiting a 60% lower Fe magnetic moment and a substantially higher ferromagnetic Curie temperature than h-Fe2P. Electrochemical measurements toward the hydrogen evolution reaction in acidic media showed that the o-Fe2P phase requires an 80 mV lower overpotential than the h-Fe2P phase to generate a current density of −10 mA/cm2, and their electronic structures suggest that the higher density of states at the Fermi energy is the origin of superior catalytic activity in o-Fe2P.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
刚刚
Rose发布了新的文献求助10
刚刚
xiaomu完成签到,获得积分10
1秒前
团子团子猪完成签到,获得积分10
1秒前
wyyt完成签到,获得积分10
2秒前
2秒前
123完成签到,获得积分10
2秒前
SINET完成签到,获得积分10
4秒前
啊啊啊啊轩完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
零零完成签到 ,获得积分10
5秒前
6秒前
7秒前
华仔应助叶远望采纳,获得10
7秒前
yuyuyuyuyuyuyu完成签到,获得积分10
9秒前
9秒前
10秒前
蒋大饼完成签到,获得积分10
10秒前
Miyo发布了新的文献求助10
12秒前
12秒前
12秒前
看文献了完成签到,获得积分10
12秒前
ningning发布了新的文献求助10
13秒前
13秒前
cslghe发布了新的文献求助10
13秒前
11马完成签到,获得积分10
13秒前
jiuwu完成签到,获得积分10
13秒前
14秒前
14秒前
思源应助Yang采纳,获得10
15秒前
15秒前
唐隶发布了新的文献求助10
15秒前
FashionBoy应助Ao采纳,获得10
16秒前
ljl发布了新的文献求助10
17秒前
封妖妖完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
Antonio发布了新的文献求助10
17秒前
别吃我的鱼完成签到,获得积分10
18秒前
18秒前
蓝天发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652693
求助须知:如何正确求助?哪些是违规求助? 4787996
关于积分的说明 15061272
捐赠科研通 4811158
什么是DOI,文献DOI怎么找? 2573692
邀请新用户注册赠送积分活动 1529549
关于科研通互助平台的介绍 1488312