Predicting the spread through air spaces in lung adenocarcinoma from preoperative 18F-FDG PET/CT radiomics

无线电技术 医学 接收机工作特性 队列 逻辑回归 置信区间 放射科 曲线下面积 临床实习 核医学 内科学 物理疗法
作者
Xiaohong Chen,Hongliang Qi,Yiping Zou,Ye Chen,Hanwei Li,Debin Hu,Li Jiang,Meng Wang,Li Chen,Hongwen Chen,Hubing Wu
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/mnm.0000000000001975
摘要

Objective This study aimed to develop an effective radiomics-clinical model to preoperatively discriminate the spread through air spaces (STAS) in lung adenocarcinoma (ADC). Methods Data from 192 ADC patients were enrolled, with 2/3 ( n = 128) allocated as the training cohort and the remaining 1/3 ( n = 64) designated as the validation cohort. A total of 2212 radiomics features were extracted from PET/computed tomography (PET/CT) images. The least absolute shrinkage and selection operator regression method was applied to select features. Logistic regression was used to construct radiomics and clinical models. Finally, a radiomics-clinical model that combined clinical with radiomics features was developed. The models were evaluated by receiver operating characteristic (ROC) curve and decision curve analysis. Results The area under the ROC curve (AUC) of the radiomics-clinical model was 0.924 (95% confidence interval, 0.878–0.969) in the training cohort and 0.919 (0.833–1.000) in the validation cohort. The AUC of the radiomics model was 0.885 (0.825–0.945) in the training cohort and 0.877 (0.766–0.988) in the validation cohort. The AUC of the clinical model was 0.883 (0.814–0.951) in the training cohort and 0.896 (0.7706–1.000) in the validation cohort. The decision curve analysis indicated its clinical usefulness. Conclusion The PET/CT-based radiomics-clinical model achieved satisfactory performance in discriminating the STAS in ADC preoperatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟图图完成签到,获得积分10
1秒前
1秒前
Cici发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
潘潘发布了新的文献求助10
5秒前
小马甲应助lanbing802采纳,获得10
5秒前
李健的小迷弟应助ChungZ采纳,获得10
5秒前
SUN完成签到,获得积分10
5秒前
6秒前
修越发布了新的文献求助10
8秒前
9秒前
cyh发布了新的文献求助10
9秒前
10秒前
酷波er应助liyichen采纳,获得10
10秒前
遇见完成签到,获得积分20
11秒前
CipherSage应助机灵的从寒采纳,获得10
11秒前
深情安青应助Sunny采纳,获得10
11秒前
默默的甜瓜完成签到,获得积分10
11秒前
Sam十九发布了新的文献求助10
12秒前
淡然的芷荷完成签到 ,获得积分10
12秒前
13秒前
希望天下0贩的0应助张LN采纳,获得10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Orange应助beibei采纳,获得10
17秒前
17秒前
Fjj发布了新的文献求助10
17秒前
17秒前
chendahuanhuan完成签到 ,获得积分10
18秒前
18秒前
mhpvv发布了新的文献求助10
19秒前
哆啦A梦发布了新的文献求助10
20秒前
icewuwu发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
liyichen发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793684
求助须知:如何正确求助?哪些是违规求助? 5751490
关于积分的说明 15486792
捐赠科研通 4920641
什么是DOI,文献DOI怎么找? 2649033
邀请新用户注册赠送积分活动 1596363
关于科研通互助平台的介绍 1550911