A Multi-Objective Active Learning Platform and Web App for Reaction Optimization

贝叶斯优化 计算机科学 初始化 替代模型 化学 机器学习 程序设计语言
作者
José Antonio Garrido Torres,Sii Hong Lau,Pranay Anchuri,Jason M. Stevens,José E. Tábora,Jun Li,Alina Borovika,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (43): 19999-20007 被引量:161
标识
DOI:10.1021/jacs.2c08592
摘要

We report the development of an open-source experimental design via Bayesian optimization platform for multi-objective reaction optimization. Using high-throughput experimentation (HTE) and virtual screening data sets containing high-dimensional continuous and discrete variables, we optimized the performance of the platform by fine-tuning the algorithm components such as reaction encodings, surrogate model parameters, and initialization techniques. Having established the framework, we applied the optimizer to real-world test scenarios for the simultaneous optimization of the reaction yield and enantioselectivity in a Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxide with two different aryl iodide substrates. Starting with no previous experimental data, the Bayesian optimizer identified reaction conditions that surpassed the previously human-driven optimization campaigns within 15 and 24 experiments, for each substrate, among 1728 possible configurations available in each optimization. To make the platform more accessible to nonexperts, we developed a graphical user interface (GUI) that can be accessed online through a web-based application and incorporated features such as condition modification on the fly and data visualization. This web application does not require software installation, removing any programming barrier to use the platform, which enables chemists to integrate Bayesian optimization routines into their everyday laboratory practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助xieji采纳,获得10
1秒前
liuyunhao7207完成签到,获得积分10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
浮游应助坚定的路人采纳,获得10
3秒前
5秒前
lzy应助Tmac采纳,获得10
5秒前
科研通AI6应助Tmac采纳,获得10
5秒前
隐形曼青应助Tmac采纳,获得10
5秒前
6秒前
bkagyin应助火星上的飞槐采纳,获得10
6秒前
珍珠奶茶完成签到,获得积分10
6秒前
李健应助哈机密南北撸多采纳,获得10
6秒前
隐形曼青应助阿白采纳,获得10
6秒前
7秒前
7秒前
哒丝萌德完成签到,获得积分10
7秒前
7秒前
7秒前
敏感小霸王完成签到 ,获得积分10
7秒前
张子吧完成签到,获得积分20
8秒前
脱壳金蝉完成签到,获得积分10
8秒前
Ljx应助专注玩手机的可乐采纳,获得10
9秒前
王燕涛发布了新的文献求助10
9秒前
近代发布了新的文献求助10
9秒前
sugar完成签到,获得积分10
9秒前
Ranmaru完成签到,获得积分10
9秒前
nn发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
hrk发布了新的文献求助10
12秒前
13秒前
可爱的函函应助桶治世界采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389