A Multi-Objective Active Learning Platform and Web App for Reaction Optimization

贝叶斯优化 计算机科学 初始化 替代模型 化学 机器学习 程序设计语言
作者
José Antonio Garrido Torres,Sii Hong Lau,Pranay Anchuri,Jason M. Stevens,José E. Tábora,Jun Li,Alina Borovika,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (43): 19999-20007 被引量:161
标识
DOI:10.1021/jacs.2c08592
摘要

We report the development of an open-source experimental design via Bayesian optimization platform for multi-objective reaction optimization. Using high-throughput experimentation (HTE) and virtual screening data sets containing high-dimensional continuous and discrete variables, we optimized the performance of the platform by fine-tuning the algorithm components such as reaction encodings, surrogate model parameters, and initialization techniques. Having established the framework, we applied the optimizer to real-world test scenarios for the simultaneous optimization of the reaction yield and enantioselectivity in a Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxide with two different aryl iodide substrates. Starting with no previous experimental data, the Bayesian optimizer identified reaction conditions that surpassed the previously human-driven optimization campaigns within 15 and 24 experiments, for each substrate, among 1728 possible configurations available in each optimization. To make the platform more accessible to nonexperts, we developed a graphical user interface (GUI) that can be accessed online through a web-based application and incorporated features such as condition modification on the fly and data visualization. This web application does not require software installation, removing any programming barrier to use the platform, which enables chemists to integrate Bayesian optimization routines into their everyday laboratory practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮绿蕊完成签到,获得积分10
刚刚
刚刚
1秒前
沉静傥完成签到,获得积分10
2秒前
cloud发布了新的文献求助10
2秒前
懒洋洋发布了新的文献求助10
2秒前
3秒前
王晗关注了科研通微信公众号
3秒前
充电宝应助姜且采纳,获得10
3秒前
可爱馒头发布了新的文献求助10
4秒前
5秒前
桃子不是涛完成签到,获得积分10
7秒前
8秒前
结实青文完成签到 ,获得积分10
8秒前
9秒前
淳之风完成签到,获得积分10
9秒前
小雒雒完成签到,获得积分10
10秒前
小木完成签到,获得积分10
11秒前
12秒前
科研通AI6应助顺利兰采纳,获得10
12秒前
13秒前
13秒前
woxbin发布了新的文献求助10
14秒前
曾经的初雪完成签到 ,获得积分10
14秒前
14秒前
15秒前
李健应助清江鱼采纳,获得10
15秒前
老实的大白菜真实的钥匙完成签到,获得积分10
15秒前
慕念完成签到,获得积分10
15秒前
JamesPei应助会撒娇的金毛采纳,获得30
16秒前
积极洋葱发布了新的文献求助10
16秒前
迟迟发布了新的文献求助10
16秒前
汉堡包应助song采纳,获得10
17秒前
17秒前
21秒前
22秒前
luxx发布了新的文献求助10
23秒前
Jeff关注了科研通微信公众号
25秒前
26秒前
xixi应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989