A Multi-Objective Active Learning Platform and Web App for Reaction Optimization

贝叶斯优化 计算机科学 初始化 替代模型 化学 机器学习 程序设计语言
作者
José Antonio Garrido Torres,Sii Hong Lau,Pranay Anchuri,Jason M. Stevens,José E. Tábora,Jun Li,Alina Borovika,Ryan P. Adams,Abigail G. Doyle
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (43): 19999-20007 被引量:161
标识
DOI:10.1021/jacs.2c08592
摘要

We report the development of an open-source experimental design via Bayesian optimization platform for multi-objective reaction optimization. Using high-throughput experimentation (HTE) and virtual screening data sets containing high-dimensional continuous and discrete variables, we optimized the performance of the platform by fine-tuning the algorithm components such as reaction encodings, surrogate model parameters, and initialization techniques. Having established the framework, we applied the optimizer to real-world test scenarios for the simultaneous optimization of the reaction yield and enantioselectivity in a Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxide with two different aryl iodide substrates. Starting with no previous experimental data, the Bayesian optimizer identified reaction conditions that surpassed the previously human-driven optimization campaigns within 15 and 24 experiments, for each substrate, among 1728 possible configurations available in each optimization. To make the platform more accessible to nonexperts, we developed a graphical user interface (GUI) that can be accessed online through a web-based application and incorporated features such as condition modification on the fly and data visualization. This web application does not require software installation, removing any programming barrier to use the platform, which enables chemists to integrate Bayesian optimization routines into their everyday laboratory practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘舰长完成签到,获得积分10
刚刚
刚刚
velen发布了新的文献求助10
1秒前
领导范儿应助szy采纳,获得10
1秒前
科研通AI6应助dophin采纳,获得30
1秒前
可燃冰完成签到,获得积分10
1秒前
Zx_1993应助youbei采纳,获得10
2秒前
2秒前
Oi小鬼完成签到 ,获得积分10
3秒前
华仔应助nn采纳,获得10
4秒前
沉静的颦完成签到,获得积分10
4秒前
naive完成签到,获得积分10
4秒前
精明之瑶发布了新的文献求助60
4秒前
小黄包子发布了新的文献求助10
4秒前
阳光完成签到,获得积分10
5秒前
chenchen发布了新的文献求助10
5秒前
慕青应助Genius采纳,获得10
5秒前
努力的小杜完成签到,获得积分10
6秒前
6秒前
佳佳完成签到,获得积分10
6秒前
潇洒荷花发布了新的文献求助10
8秒前
小马甲应助velen采纳,获得10
9秒前
9秒前
9秒前
研友_VZG7GZ应助北风北风采纳,获得10
9秒前
西贝发布了新的文献求助10
9秒前
coco发布了新的文献求助10
10秒前
10秒前
Muttu发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
情怀应助粉蒸肉采纳,获得10
11秒前
科研通AI6应助粉蒸肉采纳,获得10
11秒前
爆米花应助小黄包子采纳,获得10
11秒前
12秒前
Wy完成签到,获得积分10
13秒前
含蓄的小丸子完成签到,获得积分10
13秒前
15秒前
nn发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483