Prediction of FRP-concrete interfacial bond strength based on machine learning

纤维增强塑料 支持向量机 参数统计 复合材料 材料科学 粘结强度 债券 结构工程 决策树 人工神经网络 工程类 计算机科学 机器学习 数学 胶粘剂 统计 图层(电子) 财务 经济
作者
Feng Zhang,Chenxin Wang,Jun Li,Xingxing Zou,Lesley Sneed,Yi Bao,Yunlong Wang
出处
期刊:Engineering Structures [Elsevier]
卷期号:274: 115156-115156 被引量:23
标识
DOI:10.1016/j.engstruct.2022.115156
摘要

Externally bonding fiber reinforced polymer (FRP) to concrete structures is an effective way to enhance the mechanical performance of concrete structures. Many equations have been proposed to predict the interfacial bond strength for FRP-concrete structures but have limited accuracy due to the complexity of the bond behavior. This study proposes to formulate the FRP-concrete interfacial bond strength based on machine learning (ML) methods, which have emerged as a promising alternative to achieve high prediction accuracy in high-dimension problems. To this end, a database containing 1,375 FRP-concrete direct shear test specimens that failed due to interfacial debonding was established. The database was improved using an unsupervised isolation forest that identified and eliminated anomalous data, and was then used to train six ML models, namely artificial neural networks (ANN), support vector machine, decision tree, gradient boosting decision tree, random forest, and XGboost algorithms, to predict the FRP-concrete interfacial bond strength. The ML predictive models showed higher accuracy than 16 existing equations in the literature. The XGBoost model showed the highest accuracy, and its coefficient of variation was 54% lower than the existing equation with the highest accuracy among those considered. The ANN model was used to perform a parametric study on the influencing parameters, and a new equation was generated to predict the interfacial bond strength, considering the key influencing parameters. The equation enables interpretation of the ML models. The study combines ML models and traditional physical models to achieve a novel, interpretable ML method for predicting FRP-concrete interfacial bond strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FY发布了新的文献求助10
刚刚
孔wj完成签到,获得积分10
刚刚
wjm完成签到,获得积分10
2秒前
乔治完成签到,获得积分10
2秒前
Ll_l完成签到,获得积分10
2秒前
过儿发布了新的文献求助10
2秒前
孔wj发布了新的文献求助10
3秒前
3秒前
大个应助月亮是甜的采纳,获得10
4秒前
7秒前
maox1aoxin应助0323采纳,获得30
7秒前
延毕使者发布了新的文献求助10
7秒前
anagenesis完成签到 ,获得积分10
8秒前
跳跃雯完成签到,获得积分10
11秒前
okkk完成签到,获得积分10
12秒前
sa完成签到 ,获得积分10
14秒前
14秒前
xuexin发布了新的文献求助10
15秒前
Owen应助拙青采纳,获得10
15秒前
18秒前
18秒前
18秒前
科目三应助月亮是甜的采纳,获得10
19秒前
小蘑菇应助naonao采纳,获得10
20秒前
可爱的函函应助婷杰采纳,获得10
20秒前
msss11511发布了新的文献求助10
21秒前
Owen应助快乐的秋翠采纳,获得10
21秒前
21秒前
21秒前
Ava应助FY采纳,获得10
21秒前
ff发布了新的文献求助10
23秒前
xuexin完成签到,获得积分10
25秒前
25秒前
大砍刀发布了新的文献求助10
26秒前
27秒前
28秒前
英姑应助路人甲采纳,获得10
28秒前
jeff发布了新的文献求助10
28秒前
顾矜应助LUJyyyy采纳,获得10
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459176
求助须知:如何正确求助?哪些是违规求助? 3053746
关于积分的说明 9038127
捐赠科研通 2743025
什么是DOI,文献DOI怎么找? 1504631
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663