Electric field-driven fabrication of anisotropic hydrogels from plant proteins: Microstructure, gel performance and formation mechanism

自愈水凝胶 化学工程 电场 化学 氢键 微观结构 疏水效应 分子 材料科学 结晶学 高分子化学 有机化学 量子力学 物理 工程类
作者
Mengmeng Cao,Li Liao,Xingcai Zhang,Xing Chen,Shengfeng Peng,Liqiang Zou,Ruihong Liang,Wei Liu
出处
期刊:Food Hydrocolloids [Elsevier]
卷期号:136: 108297-108297 被引量:22
标识
DOI:10.1016/j.foodhyd.2022.108297
摘要

Soy protein isolate (SPI) hydrogels with anisotropic structures were fabricated under a low voltage electric field (1.5 V/cm) and different levels of NaCl (100–500 mmol/L). Under the weak direct-current electric field, the negatively charged protein molecules orderly arranged and accumulated around the positive electrode, where the surface charges of the amino acids were screened by the local H+ and added ions. Meanwhile, the random coil in the protein secondary structure disappeared to form ordered structures (α-helix and β-turn), and the protein exposed more hydrophobic and sulfhydryl groups. Intermolecular interactions, including disulfide bonds, hydrogen bonds and hydrophobic interactions facilitated the cross-linking of protein molecules to form hydrogels. All the hydrogels showed anisotropic networks, and the fraction of SPI attached to the gel phase (36.80% ∼ 62.17%) was found to increase with the rise of NaCl level in the protein solution. Moreover, the hardness (96.13–210.54 g), springiness (33.88% ∼ 68.30%), chewiness (121.59–292.12 g⋅s) and swelling resistance (142.79% ∼ 54.20%) of electrogels were all enhanced with increased NaCl level. Conversely, a higher ionic strength compromised the water holding stability (99.62% ∼ 66.75%) of electrogels, which could be attributed to the increased pore size within their networks that allowed moisture to be transferred. These findings may provide a novel insight for design and fabrication of plant protein hydrogels with desirable structures and characters through a green and sustainable approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栀清发布了新的文献求助10
刚刚
zss完成签到 ,获得积分10
1秒前
1秒前
张无忌发布了新的文献求助30
2秒前
3秒前
wocao完成签到 ,获得积分10
6秒前
卡卡发布了新的文献求助10
6秒前
7秒前
aa完成签到,获得积分10
7秒前
昵称什么的不重要啦完成签到 ,获得积分10
7秒前
甜筒完成签到 ,获得积分10
7秒前
兴奋的问旋应助Li猪猪采纳,获得10
8秒前
钰c完成签到,获得积分10
9秒前
心灵美的白易完成签到,获得积分10
9秒前
勤劳冰烟完成签到,获得积分10
11秒前
雨雾完成签到,获得积分10
11秒前
斯文败类应助凶狠的乐巧采纳,获得10
11秒前
11秒前
生言生语完成签到,获得积分10
11秒前
alick发布了新的文献求助10
12秒前
钰c发布了新的文献求助10
12秒前
Maggie完成签到 ,获得积分10
12秒前
四月是一只爱猫的羊完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
打打应助嘟嘟请让一让采纳,获得10
14秒前
专一完成签到,获得积分10
14秒前
Lucas应助九川采纳,获得10
14秒前
yl关闭了yl文献求助
14秒前
15秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
15秒前
15秒前
丘比特应助卡卡采纳,获得10
16秒前
16秒前
毛毛发布了新的文献求助10
16秒前
ljx完成签到 ,获得积分10
16秒前
活力山蝶应助小白采纳,获得10
19秒前
xg完成签到,获得积分10
19秒前
Zezezee发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794