Machine learning prediction of concrete compressive strength using rebound hammer test

施密特锤 抗压强度 支持向量机 锤子 预测建模 多元统计 机器学习 计算机科学 人工智能 工程类 结构工程 材料科学 复合材料
作者
Abdulkader El-Mir,Samer El-Zahab,Zoubir Mehdi Sbartaï,Farah Homsi,Jacqueline Saliba,Hilal El-Hassan
出处
期刊:Journal of building engineering [Elsevier]
卷期号:64: 105538-105538 被引量:42
标识
DOI:10.1016/j.jobe.2022.105538
摘要

Machine learning has become a key branch in artificial intelligence by providing unique predictive modeling solutions. Predicting the compressive strength of concrete determined using non-destructive test techniques (NDT) includes high levels of uncertainty. This uncertainty directly depends on the repeatability of the measurement and the variability of concrete properties. This study aims to evaluate the effect of mixture composition and age of concrete on the coefficient of variation (CV) of the rebound hammer index applied to various types of concrete. Several supervised machine learning models, including multivariate multiple regression (MMR), support vector machine (SVM), Gaussian process regression (GPR), and Regression tree (RT) were utilized to predict the compressive strength of concrete. A large dataset of 468 cubic concrete specimens was sorted into four categories and employed for simulation. Regardless of the selected dataset, it was concluded that GPR/SVM and RT yielded the most accurate model prediction metrics of compressive strength when using rebound hammer records over MMR model. The results of the adopted models were remarkably better when mixture proportion and age of concrete features (i.e., age and w/p) were considered in the simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalalala完成签到,获得积分20
1秒前
好大一个赣宝完成签到,获得积分10
2秒前
会武功的阿吉完成签到,获得积分10
2秒前
搞怪哑铃发布了新的文献求助10
2秒前
小王关注了科研通微信公众号
2秒前
曼珠沙华完成签到 ,获得积分10
3秒前
狂野的慕卉完成签到,获得积分10
3秒前
ll发布了新的文献求助10
3秒前
于海欣完成签到,获得积分10
4秒前
xxxlglm发布了新的文献求助10
4秒前
swetcol完成签到,获得积分10
5秒前
半斤发布了新的文献求助20
5秒前
5秒前
我是老大应助ddd采纳,获得10
5秒前
6秒前
36456657应助含蓄安南采纳,获得10
7秒前
7秒前
三叶草完成签到,获得积分10
7秒前
独云完成签到,获得积分10
8秒前
小马甲应助买椟还珠采纳,获得10
9秒前
tonight发布了新的文献求助30
10秒前
11秒前
尉迟凌波发布了新的文献求助10
11秒前
Mn完成签到,获得积分10
11秒前
13秒前
完美世界应助ll采纳,获得10
13秒前
13秒前
ddd完成签到,获得积分10
13秒前
隐形曼青应助聆听采纳,获得10
13秒前
Hello应助正直帆布鞋采纳,获得10
14秒前
菠萝蜜完成签到,获得积分20
15秒前
隐形曼青应助zz采纳,获得10
16秒前
Jasper应助Justin采纳,获得10
16秒前
彩色的恋风完成签到,获得积分10
16秒前
1wcx2关注了科研通微信公众号
16秒前
阳和启蛰完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186