Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra

采样(信号处理) 环境科学 土壤科学 数学 化学 统计 计算机科学 滤波器(信号处理) 计算机视觉
作者
Gafur GÖZÜKARA,Sevda ALTUNBAŞ,Orhan Dengi̇z,Alper Adak
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107459-107459 被引量:10
标识
DOI:10.1016/j.compag.2022.107459
摘要

• Different soil to water ratios can affect prediction performance using Vis-NIR and pXRF spectra. • Prediction performance of EC and pH were affected by soil sampling strategies. • Vis-NIR spectra had higher prediction performance compared to pXRF. • Combined Vis-NIR and pXRF spectra had no improvement on prediction accuracy. Soil electrical conductivity (EC) and pH play a critical role in managing agricultural productivity. We investigated the effect of soil to water ratios (1:1, 1:2.5, 1:5) and sampling strategies (surface, profile wall, and surface + profile wall) on prediction accuracy using individual and combined visible near infrared (Vis-NIR) and portable X-ray fluorescence (pXRF) spectra with machine learning algorithms for EC and pH. In total, 200 soil samples were collected from the soil surface (100 soil samples) and profile wall (100 soil samples) in pasture lands in Eskisehir, Türkiye. The soil samples were analyzed by considering soil to water ratios (1:1, 1:2.5, 1:5) for EC and pH and scanned by Vis-NIR (350–2500 nm) and pXRF (0–45 keV). In total 54 different predictor models were tested to achieve the highest prediction accuracy for both EC and pH. The seven machine learning regressions (elastic net, k-nearest neighbors, lasso, partial least squares, random forest, ridge, and support vector machine-linear) were applied in modeling with calibration (70 % soil samples) and validation (30 % soil samples) datasets for each model. The results suggested that the EC 1:2.5 and EC 1:5 ratios had relatively higher prediction accuracy (r = 0.95, R 2 = 0.93, RMSE = 0.58, MAE = 0.46, RPD = 3.57, and RPIQ = 5.33) using Vis-NIR spectra with partial least squares and support vector machine-linear models in profile wall compared to other sampling strategies and EC 1:1 ratio. The pH 1:2.5 ratio had relatively higher prediction accuracy (r = 0.90, R 2 = 0.81, RMSE = 0.07, MAE = 0.06, RPD = 2.49, and RPIQ = 3.71) using Vis-NIR spectra with random forest model in profile wall compared to other sampling strategies and pH 1:1 and pH 1:5 ratios. In addition, combined Vis-NIR and pXRF spectra had no improvement in prediction accuracy. Finally, it can be concluded that the prediction accuracy is affected by soil to water ratios and sampling strategies. Individual Vis-NIR spectra can reach the highest prediction accuracy for EC and pH compared to combined pXRF and Vis-NIR spectra.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海子发布了新的文献求助20
刚刚
aichifan完成签到,获得积分10
1秒前
左左完成签到,获得积分10
1秒前
1秒前
2秒前
老实善愁发布了新的文献求助10
2秒前
2秒前
2秒前
Serendipity完成签到,获得积分10
3秒前
纸农完成签到,获得积分10
3秒前
bkagyin应助猫尔儿采纳,获得30
3秒前
aiyu完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
一坞鱼完成签到,获得积分10
5秒前
hanzhua132发布了新的文献求助10
5秒前
11220发布了新的文献求助10
5秒前
5秒前
addd完成签到,获得积分20
5秒前
LX发布了新的文献求助10
6秒前
6秒前
Youth完成签到,获得积分10
6秒前
自信的雨安完成签到,获得积分20
6秒前
洋葱王子发布了新的文献求助10
6秒前
orixero应助动听的冬日采纳,获得10
6秒前
marcl完成签到,获得积分10
6秒前
11完成签到,获得积分10
6秒前
大个应助qhg采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
yi完成签到,获得积分10
8秒前
福林古斯完成签到 ,获得积分10
8秒前
科研通AI6应助tjt采纳,获得10
8秒前
蓝桉发布了新的文献求助30
9秒前
li发布了新的文献求助10
9秒前
甜蜜黄豆发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764