亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra

采样(信号处理) 环境科学 土壤科学 数学 化学 统计 计算机科学 滤波器(信号处理) 计算机视觉
作者
Gafur GÖZÜKARA,Sevda ALTUNBAŞ,Orhan Dengi̇z,Alper Adak
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107459-107459 被引量:10
标识
DOI:10.1016/j.compag.2022.107459
摘要

• Different soil to water ratios can affect prediction performance using Vis-NIR and pXRF spectra. • Prediction performance of EC and pH were affected by soil sampling strategies. • Vis-NIR spectra had higher prediction performance compared to pXRF. • Combined Vis-NIR and pXRF spectra had no improvement on prediction accuracy. Soil electrical conductivity (EC) and pH play a critical role in managing agricultural productivity. We investigated the effect of soil to water ratios (1:1, 1:2.5, 1:5) and sampling strategies (surface, profile wall, and surface + profile wall) on prediction accuracy using individual and combined visible near infrared (Vis-NIR) and portable X-ray fluorescence (pXRF) spectra with machine learning algorithms for EC and pH. In total, 200 soil samples were collected from the soil surface (100 soil samples) and profile wall (100 soil samples) in pasture lands in Eskisehir, Türkiye. The soil samples were analyzed by considering soil to water ratios (1:1, 1:2.5, 1:5) for EC and pH and scanned by Vis-NIR (350–2500 nm) and pXRF (0–45 keV). In total 54 different predictor models were tested to achieve the highest prediction accuracy for both EC and pH. The seven machine learning regressions (elastic net, k-nearest neighbors, lasso, partial least squares, random forest, ridge, and support vector machine-linear) were applied in modeling with calibration (70 % soil samples) and validation (30 % soil samples) datasets for each model. The results suggested that the EC 1:2.5 and EC 1:5 ratios had relatively higher prediction accuracy (r = 0.95, R 2 = 0.93, RMSE = 0.58, MAE = 0.46, RPD = 3.57, and RPIQ = 5.33) using Vis-NIR spectra with partial least squares and support vector machine-linear models in profile wall compared to other sampling strategies and EC 1:1 ratio. The pH 1:2.5 ratio had relatively higher prediction accuracy (r = 0.90, R 2 = 0.81, RMSE = 0.07, MAE = 0.06, RPD = 2.49, and RPIQ = 3.71) using Vis-NIR spectra with random forest model in profile wall compared to other sampling strategies and pH 1:1 and pH 1:5 ratios. In addition, combined Vis-NIR and pXRF spectra had no improvement in prediction accuracy. Finally, it can be concluded that the prediction accuracy is affected by soil to water ratios and sampling strategies. Individual Vis-NIR spectra can reach the highest prediction accuracy for EC and pH compared to combined pXRF and Vis-NIR spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助MOMO采纳,获得10
2秒前
chenlc971125完成签到 ,获得积分10
8秒前
8秒前
ffff完成签到 ,获得积分10
19秒前
22秒前
23秒前
MOMO发布了新的文献求助10
26秒前
追风完成签到,获得积分10
27秒前
小天发布了新的文献求助10
27秒前
MOMO完成签到,获得积分10
32秒前
lulumomoxixi完成签到 ,获得积分10
39秒前
50秒前
shareef发布了新的文献求助30
1分钟前
Mcrolando发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Jasper应助yzy采纳,获得10
1分钟前
小黑超努力完成签到 ,获得积分10
1分钟前
CodeCraft应助医科大学菜鸡采纳,获得10
1分钟前
lixiaolu完成签到 ,获得积分10
1分钟前
1分钟前
yzy发布了新的文献求助10
2分钟前
guoguo完成签到 ,获得积分10
2分钟前
不安听露完成签到 ,获得积分10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
深情的牛排完成签到,获得积分10
2分钟前
Mcrolando完成签到,获得积分10
2分钟前
天天开心完成签到,获得积分10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得30
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
易瑾完成签到 ,获得积分10
2分钟前
虚幻馒头发布了新的文献求助10
2分钟前
jinyue完成签到 ,获得积分10
3分钟前
虚幻馒头完成签到,获得积分10
3分钟前
山复尔尔完成签到 ,获得积分10
3分钟前
huxuehong完成签到 ,获得积分10
3分钟前
徐徐完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585