Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra

采样(信号处理) 环境科学 土壤科学 数学 化学 统计 计算机科学 滤波器(信号处理) 计算机视觉
作者
Gafur GÖZÜKARA,Sevda ALTUNBAŞ,Orhan Dengi̇z,Alper Adak
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107459-107459 被引量:10
标识
DOI:10.1016/j.compag.2022.107459
摘要

• Different soil to water ratios can affect prediction performance using Vis-NIR and pXRF spectra. • Prediction performance of EC and pH were affected by soil sampling strategies. • Vis-NIR spectra had higher prediction performance compared to pXRF. • Combined Vis-NIR and pXRF spectra had no improvement on prediction accuracy. Soil electrical conductivity (EC) and pH play a critical role in managing agricultural productivity. We investigated the effect of soil to water ratios (1:1, 1:2.5, 1:5) and sampling strategies (surface, profile wall, and surface + profile wall) on prediction accuracy using individual and combined visible near infrared (Vis-NIR) and portable X-ray fluorescence (pXRF) spectra with machine learning algorithms for EC and pH. In total, 200 soil samples were collected from the soil surface (100 soil samples) and profile wall (100 soil samples) in pasture lands in Eskisehir, Türkiye. The soil samples were analyzed by considering soil to water ratios (1:1, 1:2.5, 1:5) for EC and pH and scanned by Vis-NIR (350–2500 nm) and pXRF (0–45 keV). In total 54 different predictor models were tested to achieve the highest prediction accuracy for both EC and pH. The seven machine learning regressions (elastic net, k-nearest neighbors, lasso, partial least squares, random forest, ridge, and support vector machine-linear) were applied in modeling with calibration (70 % soil samples) and validation (30 % soil samples) datasets for each model. The results suggested that the EC 1:2.5 and EC 1:5 ratios had relatively higher prediction accuracy (r = 0.95, R 2 = 0.93, RMSE = 0.58, MAE = 0.46, RPD = 3.57, and RPIQ = 5.33) using Vis-NIR spectra with partial least squares and support vector machine-linear models in profile wall compared to other sampling strategies and EC 1:1 ratio. The pH 1:2.5 ratio had relatively higher prediction accuracy (r = 0.90, R 2 = 0.81, RMSE = 0.07, MAE = 0.06, RPD = 2.49, and RPIQ = 3.71) using Vis-NIR spectra with random forest model in profile wall compared to other sampling strategies and pH 1:1 and pH 1:5 ratios. In addition, combined Vis-NIR and pXRF spectra had no improvement in prediction accuracy. Finally, it can be concluded that the prediction accuracy is affected by soil to water ratios and sampling strategies. Individual Vis-NIR spectra can reach the highest prediction accuracy for EC and pH compared to combined pXRF and Vis-NIR spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny发布了新的文献求助30
1秒前
鱼日完成签到,获得积分10
1秒前
老解发布了新的文献求助10
1秒前
2秒前
2秒前
曾吃鱼发布了新的文献求助100
2秒前
补喵发布了新的文献求助10
2秒前
aqaqaqa完成签到,获得积分10
2秒前
救救孩子救救孩子完成签到,获得积分10
3秒前
153495159应助长安宁采纳,获得10
3秒前
猫又完成签到,获得积分10
4秒前
夜如雨发布了新的文献求助10
4秒前
6秒前
不配.应助yyx采纳,获得60
7秒前
Lee发布了新的文献求助30
8秒前
爆米花应助秋水龙影采纳,获得10
8秒前
打打应助静俏采纳,获得10
10秒前
王也完成签到,获得积分10
10秒前
s可发布了新的文献求助20
11秒前
沉默的不惜完成签到,获得积分20
12秒前
Becky完成签到,获得积分10
13秒前
13秒前
13秒前
赘婿应助爱学习的鼠鼠采纳,获得10
14秒前
笑、完成签到,获得积分10
14秒前
尊敬的左蓝完成签到,获得积分10
15秒前
Sherlock完成签到,获得积分10
15秒前
15秒前
17秒前
简单十三发布了新的文献求助10
17秒前
风险事件完成签到,获得积分10
18秒前
Jasper应助桂花乌龙采纳,获得30
18秒前
18秒前
学术智子完成签到,获得积分10
18秒前
刮风这天完成签到,获得积分10
20秒前
uuuu发布了新的文献求助10
20秒前
XYWang发布了新的文献求助10
20秒前
顺利玫瑰关注了科研通微信公众号
21秒前
完美世界应助香蕉子骞采纳,获得10
22秒前
麻辣香锅应助cmccs采纳,获得50
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155652
求助须知:如何正确求助?哪些是违规求助? 2806900
关于积分的说明 7870998
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312153
科研通“疑难数据库(出版商)”最低求助积分说明 629913
版权声明 601892