亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra

采样(信号处理) 环境科学 土壤科学 数学 化学 统计 计算机科学 计算机视觉 滤波器(信号处理)
作者
Gafur GÖZÜKARA,Sevda ALTUNBAŞ,Orhan Dengi̇z,Alper Adak
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:203: 107459-107459 被引量:10
标识
DOI:10.1016/j.compag.2022.107459
摘要

• Different soil to water ratios can affect prediction performance using Vis-NIR and pXRF spectra. • Prediction performance of EC and pH were affected by soil sampling strategies. • Vis-NIR spectra had higher prediction performance compared to pXRF. • Combined Vis-NIR and pXRF spectra had no improvement on prediction accuracy. Soil electrical conductivity (EC) and pH play a critical role in managing agricultural productivity. We investigated the effect of soil to water ratios (1:1, 1:2.5, 1:5) and sampling strategies (surface, profile wall, and surface + profile wall) on prediction accuracy using individual and combined visible near infrared (Vis-NIR) and portable X-ray fluorescence (pXRF) spectra with machine learning algorithms for EC and pH. In total, 200 soil samples were collected from the soil surface (100 soil samples) and profile wall (100 soil samples) in pasture lands in Eskisehir, Türkiye. The soil samples were analyzed by considering soil to water ratios (1:1, 1:2.5, 1:5) for EC and pH and scanned by Vis-NIR (350–2500 nm) and pXRF (0–45 keV). In total 54 different predictor models were tested to achieve the highest prediction accuracy for both EC and pH. The seven machine learning regressions (elastic net, k-nearest neighbors, lasso, partial least squares, random forest, ridge, and support vector machine-linear) were applied in modeling with calibration (70 % soil samples) and validation (30 % soil samples) datasets for each model. The results suggested that the EC 1:2.5 and EC 1:5 ratios had relatively higher prediction accuracy (r = 0.95, R 2 = 0.93, RMSE = 0.58, MAE = 0.46, RPD = 3.57, and RPIQ = 5.33) using Vis-NIR spectra with partial least squares and support vector machine-linear models in profile wall compared to other sampling strategies and EC 1:1 ratio. The pH 1:2.5 ratio had relatively higher prediction accuracy (r = 0.90, R 2 = 0.81, RMSE = 0.07, MAE = 0.06, RPD = 2.49, and RPIQ = 3.71) using Vis-NIR spectra with random forest model in profile wall compared to other sampling strategies and pH 1:1 and pH 1:5 ratios. In addition, combined Vis-NIR and pXRF spectra had no improvement in prediction accuracy. Finally, it can be concluded that the prediction accuracy is affected by soil to water ratios and sampling strategies. Individual Vis-NIR spectra can reach the highest prediction accuracy for EC and pH compared to combined pXRF and Vis-NIR spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Juniorrr发布了新的文献求助30
8秒前
9秒前
希望天下0贩的0应助XUANNI采纳,获得10
11秒前
布丁完成签到,获得积分10
20秒前
27秒前
30秒前
小石榴爸爸完成签到 ,获得积分10
33秒前
Gromit完成签到,获得积分10
38秒前
斯文败类应助科研通管家采纳,获得10
41秒前
ceeray23应助科研通管家采纳,获得10
41秒前
传奇3应助科研通管家采纳,获得10
41秒前
ceeray23应助科研通管家采纳,获得10
41秒前
haozi王发布了新的文献求助10
41秒前
Swear完成签到 ,获得积分10
42秒前
风停了完成签到,获得积分10
43秒前
乐乐应助Gromit采纳,获得10
44秒前
haozi王完成签到,获得积分20
52秒前
Jasper应助Juniorrr采纳,获得10
58秒前
1分钟前
如梦发布了新的文献求助10
1分钟前
1分钟前
如梦完成签到,获得积分10
1分钟前
lu完成签到,获得积分10
1分钟前
刘欣欣发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
胖头鱼please完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
wanci应助HighFeng_Lei采纳,获得10
2分钟前
2分钟前
HighFeng_Lei发布了新的文献求助10
2分钟前
2分钟前
荼蘼发布了新的文献求助10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198513
求助须知:如何正确求助?哪些是违规求助? 4379453
关于积分的说明 13638137
捐赠科研通 4235577
什么是DOI,文献DOI怎么找? 2323428
邀请新用户注册赠送积分活动 1321551
关于科研通互助平台的介绍 1272535