清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra

采样(信号处理) 环境科学 土壤科学 数学 化学 统计 计算机科学 计算机视觉 滤波器(信号处理)
作者
Gafur GÖZÜKARA,Sevda ALTUNBAŞ,Orhan Dengi̇z,Alper Adak
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:203: 107459-107459 被引量:10
标识
DOI:10.1016/j.compag.2022.107459
摘要

• Different soil to water ratios can affect prediction performance using Vis-NIR and pXRF spectra. • Prediction performance of EC and pH were affected by soil sampling strategies. • Vis-NIR spectra had higher prediction performance compared to pXRF. • Combined Vis-NIR and pXRF spectra had no improvement on prediction accuracy. Soil electrical conductivity (EC) and pH play a critical role in managing agricultural productivity. We investigated the effect of soil to water ratios (1:1, 1:2.5, 1:5) and sampling strategies (surface, profile wall, and surface + profile wall) on prediction accuracy using individual and combined visible near infrared (Vis-NIR) and portable X-ray fluorescence (pXRF) spectra with machine learning algorithms for EC and pH. In total, 200 soil samples were collected from the soil surface (100 soil samples) and profile wall (100 soil samples) in pasture lands in Eskisehir, Türkiye. The soil samples were analyzed by considering soil to water ratios (1:1, 1:2.5, 1:5) for EC and pH and scanned by Vis-NIR (350–2500 nm) and pXRF (0–45 keV). In total 54 different predictor models were tested to achieve the highest prediction accuracy for both EC and pH. The seven machine learning regressions (elastic net, k-nearest neighbors, lasso, partial least squares, random forest, ridge, and support vector machine-linear) were applied in modeling with calibration (70 % soil samples) and validation (30 % soil samples) datasets for each model. The results suggested that the EC 1:2.5 and EC 1:5 ratios had relatively higher prediction accuracy (r = 0.95, R 2 = 0.93, RMSE = 0.58, MAE = 0.46, RPD = 3.57, and RPIQ = 5.33) using Vis-NIR spectra with partial least squares and support vector machine-linear models in profile wall compared to other sampling strategies and EC 1:1 ratio. The pH 1:2.5 ratio had relatively higher prediction accuracy (r = 0.90, R 2 = 0.81, RMSE = 0.07, MAE = 0.06, RPD = 2.49, and RPIQ = 3.71) using Vis-NIR spectra with random forest model in profile wall compared to other sampling strategies and pH 1:1 and pH 1:5 ratios. In addition, combined Vis-NIR and pXRF spectra had no improvement in prediction accuracy. Finally, it can be concluded that the prediction accuracy is affected by soil to water ratios and sampling strategies. Individual Vis-NIR spectra can reach the highest prediction accuracy for EC and pH compared to combined pXRF and Vis-NIR spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasmine完成签到 ,获得积分10
13秒前
21秒前
小二郎应助科研通管家采纳,获得10
34秒前
研友_892kOL完成签到,获得积分10
1分钟前
1分钟前
webmaster完成签到,获得积分10
1分钟前
zgx完成签到 ,获得积分10
1分钟前
迷茫的一代完成签到,获得积分10
2分钟前
3分钟前
3分钟前
书生完成签到,获得积分10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
lilaccalla完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
6分钟前
6分钟前
伏城完成签到 ,获得积分10
6分钟前
丘比特应助科研通管家采纳,获得10
6分钟前
科研通AI5应助淡定友有采纳,获得10
6分钟前
华仔应助kmkm采纳,获得10
7分钟前
幽默的太阳完成签到 ,获得积分10
8分钟前
脑洞疼应助科研通管家采纳,获得10
8分钟前
英姑应助科研通管家采纳,获得10
8分钟前
通科研完成签到 ,获得积分10
8分钟前
8分钟前
kmkm发布了新的文献求助10
9分钟前
9分钟前
快飞飞完成签到 ,获得积分10
9分钟前
9分钟前
jyf发布了新的文献求助10
9分钟前
jyf关注了科研通微信公众号
10分钟前
10分钟前
jyf发布了新的文献求助10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155708
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792891
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216