Immune scoring model based on immune cell infiltration to predict prognosis in diffuse large B‐cell lymphoma

免疫系统 比例危险模型 医学 单变量分析 弥漫性大B细胞淋巴瘤 免疫学 癌症研究 肿瘤科 淋巴瘤 内科学 多元分析
作者
Jincai Yang,Lili Yu,Jianchen Man,Huiling Chen,Lei Zhou,Li Zhao
出处
期刊:Cancer [Wiley]
卷期号:129 (2): 235-244 被引量:1
标识
DOI:10.1002/cncr.34519
摘要

Diffuse large B-cell lymphoma (DLBCL) is genetically heterogeneous in both pathogenesis and clinical symptoms. Most studies on tumor prognosis have not fully considered the role of tumor-infiltrating immune cells. This study focused on the role of tumor-infiltrating immune cells in the prognosis of DLBCL.The GSE10846 data set from the National Center for Biotechnology Information's Gene Expression Omnibus was used as the training set, and the GSE53786 data set was used as the validation set. The proportion of immune cells in each sample was calculated with the CIBERSORT algorithm using R software. After 10 immune cells were screened out (activated memory CD4 positive T cells, follicular helper T cells, regulatory T cells, gamma-delta T cells, activated natural killer cells, M0 macrophages, M2 macrophages, resting dendritic cells, and eosinophils) by univariate Cox analysis, Lasso regression and random forest sampling analyses were performed, the intersecting immune cells were selected for multifactor Cox analysis, and a predictive model was constructed combined with clinical information. Predictive performance was assessed using survival analysis and time-dependent receiver operating characteristic curve analysis.In total, 539 samples were included in this study, and samples with p < .05 were retained using CIBERSORT. Univariate Cox analysis yielded 10 cell types that were associated with overall survival. Two kinds of immune cells were obtained by Lasso regression combined with the random forest method and were used to construct a prognostic model combined with clinical information. The reliability of the model was validated in two data sets.The immune cell-based prediction model constructed by the authors can effectively predict the prognostic outcome of patients with DLBCL, whereas nomogram plots can help clinicians assess the probability of long-term survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
新奇完成签到 ,获得积分10
16秒前
rui完成签到 ,获得积分10
20秒前
24秒前
CaoJing完成签到 ,获得积分10
28秒前
迅速的念芹完成签到 ,获得积分10
29秒前
33秒前
mc完成签到 ,获得积分10
43秒前
44秒前
波西米亚完成签到,获得积分10
45秒前
HXL完成签到 ,获得积分10
46秒前
chawenxian2025完成签到 ,获得积分10
48秒前
49秒前
动听安筠完成签到 ,获得积分10
53秒前
温如军完成签到 ,获得积分10
1分钟前
月儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
戈多发布了新的文献求助10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分0
1分钟前
Simon_chat完成签到,获得积分0
1分钟前
吐司炸弹完成签到,获得积分10
1分钟前
mayfly完成签到,获得积分10
1分钟前
1分钟前
1分钟前
交换余生完成签到,获得积分10
1分钟前
zhangjw完成签到 ,获得积分10
1分钟前
快乐的90后fjk完成签到 ,获得积分10
1分钟前
yqcsysu完成签到 ,获得积分0
1分钟前
lyj完成签到 ,获得积分10
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
酷酷的山雁完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
sowhat完成签到 ,获得积分10
2分钟前
黄百川完成签到 ,获得积分10
2分钟前
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353569
求助须知:如何正确求助?哪些是违规求助? 2978155
关于积分的说明 8683992
捐赠科研通 2659598
什么是DOI,文献DOI怎么找? 1456286
科研通“疑难数据库(出版商)”最低求助积分说明 674327
邀请新用户注册赠送积分活动 665049