Immune scoring model based on immune cell infiltration to predict prognosis in diffuse large B‐cell lymphoma

免疫系统 比例危险模型 医学 滤泡性淋巴瘤 单变量分析 弥漫性大B细胞淋巴瘤 免疫学 癌症研究 肿瘤科 淋巴瘤 内科学 多元分析
作者
Jincai Yang,Lili Yu,Jianchen Man,Huiling Chen,Lanxia Zhou,Li Zhao
出处
期刊:Cancer [Wiley]
卷期号:129 (2): 235-244 被引量:7
标识
DOI:10.1002/cncr.34519
摘要

Abstract Background Diffuse large B‐cell lymphoma (DLBCL) is genetically heterogeneous in both pathogenesis and clinical symptoms. Most studies on tumor prognosis have not fully considered the role of tumor‐infiltrating immune cells. This study focused on the role of tumor‐infiltrating immune cells in the prognosis of DLBCL. Methods The GSE10846 data set from the National Center for Biotechnology Information’s Gene Expression Omnibus was used as the training set, and the GSE53786 data set was used as the validation set. The proportion of immune cells in each sample was calculated with the CIBERSORT algorithm using R software. After 10 immune cells were screened out (activated memory CD4 positive T cells, follicular helper T cells, regulatory T cells, gamma‐delta T cells, activated natural killer cells, M0 macrophages, M2 macrophages, resting dendritic cells, and eosinophils) by univariate Cox analysis, Lasso regression and random forest sampling analyses were performed, the intersecting immune cells were selected for multifactor Cox analysis, and a predictive model was constructed combined with clinical information. Predictive performance was assessed using survival analysis and time‐dependent receiver operating characteristic curve analysis. Results In total, 539 samples were included in this study, and samples with p < .05 were retained using CIBERSORT. Univariate Cox analysis yielded 10 cell types that were associated with overall survival. Two kinds of immune cells were obtained by Lasso regression combined with the random forest method and were used to construct a prognostic model combined with clinical information. The reliability of the model was validated in two data sets. Conclusions The immune cell‐based prediction model constructed by the authors can effectively predict the prognostic outcome of patients with DLBCL, whereas nomogram plots can help clinicians assess the probability of long‐term survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助紧张的问薇采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
勤奋太君发布了新的文献求助10
1秒前
甜甜又亦完成签到,获得积分10
2秒前
2秒前
wzt完成签到,获得积分10
2秒前
烟花应助yangxt-iga采纳,获得10
3秒前
wentao发布了新的文献求助10
3秒前
ri_290完成签到,获得积分10
3秒前
hh完成签到,获得积分10
3秒前
3秒前
3秒前
李蕤蕤完成签到,获得积分10
3秒前
4秒前
SSSS完成签到,获得积分10
4秒前
HU完成签到,获得积分10
4秒前
4秒前
喜悦忆安完成签到,获得积分10
4秒前
4秒前
4秒前
2t发布了新的文献求助30
4秒前
黄紫红蓝发布了新的文献求助10
4秒前
稳重雁易完成签到 ,获得积分10
4秒前
5秒前
洛苏完成签到,获得积分10
6秒前
6秒前
Judson完成签到 ,获得积分10
6秒前
时尚战斗机完成签到,获得积分10
6秒前
思源应助chun123采纳,获得10
6秒前
严冥幽完成签到 ,获得积分10
8秒前
庆庆完成签到 ,获得积分10
8秒前
8秒前
8秒前
斯利美尔发布了新的文献求助10
9秒前
zd发布了新的文献求助10
9秒前
铁甲小宝发布了新的文献求助10
10秒前
LHH发布了新的文献求助10
10秒前
清脆平凡完成签到,获得积分10
11秒前
summer完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997