Modelling hydraulic and capillary‐driven two‐phase fluid flow in unsaturated concretes at the meso‐scale with a unique coupled DEM‐CFD technique

吸附性 毛细管作用 材料科学 毛细管压力 计算流体力学 机械 流体力学 岩土工程 离散元法 磁导率 水泥 多孔性 多孔介质 复合材料 地质学 化学 物理 生物化学
作者
M. Krzaczek,Michał Nitka,J. Tejchman
出处
期刊:International Journal for Numerical and Analytical Methods in Geomechanics [Wiley]
卷期号:47 (1): 23-53 被引量:8
标识
DOI:10.1002/nag.3459
摘要

Abstract The goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two‐phase (water and moist air) flow of hydraulically and capillary‐driven fluid in unsaturated concrete was developed. By merging the discrete element method (DEM) with computational fluid dynamics (CFD) under isothermal settings, the process was numerically studied at the meso‐scale in two‐dimensional conditions. A flow network was used to describe fluid behaviour in a continuous domain between particles. Small concrete specimens of a simplified particle mesostructure were subjected to fully coupled hydro‐mechanical simulation tests. A simple uniaxial compression test was used to calibrate the pure DEM represented by bonded spheres, while a permeability and sorptivity test for an assembly of spheres was used to calibrate the pure CFD. For simplified specimens of the pure cement matrix, cement matrix with aggregate, and cement matrix with aggregate and ITZ of a given thickness, DEM/CFD simulations were performed sequentially. The numerical results of permeability and sorptivity were directly compared to the data found in the literature. A satisfactory agreement was achieved. Porous ITZs in concrete were found to reduce sorption by slowing the capillary‐driven fluid flow, and to speed the full saturation of pores when sufficiently high hydraulic water pressures were dominant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪兽完成签到,获得积分10
刚刚
1秒前
ntxiaohu完成签到,获得积分10
2秒前
乐观银耳汤完成签到,获得积分10
2秒前
荆月竹完成签到,获得积分10
2秒前
3秒前
研友_8DA7DL完成签到,获得积分10
3秒前
淡定的月半完成签到,获得积分10
4秒前
在我梦里绕完成签到,获得积分10
5秒前
科研通AI2S应助东asdfghjkl采纳,获得10
5秒前
李泽中完成签到,获得积分20
5秒前
小小aa16完成签到,获得积分10
5秒前
小豪号发布了新的文献求助10
6秒前
独摇之完成签到,获得积分10
6秒前
魏106047完成签到,获得积分10
7秒前
tg2024完成签到,获得积分10
7秒前
犹豫梦旋完成签到,获得积分10
7秒前
大侠完成签到,获得积分10
7秒前
所所应助Jason-1024采纳,获得10
7秒前
今后应助平常的仙人掌采纳,获得10
8秒前
9秒前
9秒前
9秒前
巧克力张张包完成签到,获得积分10
10秒前
eternity136应助chen1999采纳,获得10
10秒前
10秒前
Apple完成签到,获得积分10
12秒前
13秒前
13秒前
史子轩发布了新的文献求助10
14秒前
16秒前
JamesPei应助nyfz2002采纳,获得10
16秒前
睡觉晒太阳应助问问问采纳,获得10
17秒前
霸气的念云完成签到,获得积分10
17秒前
达不刘发布了新的文献求助30
18秒前
淡然智宸完成签到,获得积分10
18秒前
conanyangqun完成签到,获得积分10
18秒前
清爽盼秋完成签到,获得积分10
18秒前
Jason-1024发布了新的文献求助10
19秒前
yjn完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784882
关于积分的说明 7769151
捐赠科研通 2440425
什么是DOI,文献DOI怎么找? 1297383
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792