A Machine Learning Model for Adsorption Energies of Chemical Species Applied to CO2 Electroreduction

吸附 稳健性(进化) 堆积 概括性 支持向量机 计算机科学 离子 化学 材料科学 机器学习 物理化学 心理学 生物化学 有机化学 心理治疗师 基因
作者
P. H. R. Amaral,Alvaro D. Torrez-Baptista,Dawany Dionísio,Thiago Lopes,Júlio R. Meneghini,Caetano R. Miranda
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:169 (11): 116505-116505 被引量:2
标识
DOI:10.1149/1945-7111/ac9f7a
摘要

Machine learning methods are applied to obtain adsorption energies of different chemical species on (100), (111), and (211) FCC surfaces of several transition metals and Pb. Based on information available in databases containing adsorption energies obtained via first-principles calculations, we implemented MLPRegressor, XGBRegressor, Support Vector Regressor, and Stacking machine learning models. The fourth model is created from the combination of the previous three through a Stacking technique. In a broader context, our results showed the robustness of machine learning models and the ability of these methods to speed up the screening materials to specific goals, at a low computational cost. We emphasize the ability of our models to predict the adsorption energy for different systems. Due to their generality of them, we were able to make ion predictions on metallic surfaces, taking into account the influence of different functionals. This capability is of special significance due to the difficulty of calculating the correct energy for charged systems by traditional atomistic simulations. From then on, we made predictions for important chemical species in the CO 2 electroreduction process, such as the radical anion CO 2 −• , an important intermediary for obtaining new products in view of a negative carbon footprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Charming应助明理的采纳,获得20
2秒前
我是老大应助yyyyyy采纳,获得10
3秒前
4秒前
xiaogui发布了新的文献求助10
4秒前
4秒前
Yhy发布了新的文献求助10
4秒前
1234567890完成签到 ,获得积分10
7秒前
7秒前
狗蛋发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
yy应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得20
8秒前
Orange应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
9秒前
勤劳的高山完成签到,获得积分10
10秒前
ding应助lanshuitai采纳,获得10
10秒前
10秒前
12秒前
慕青应助isonomia采纳,获得50
12秒前
14秒前
14秒前
16秒前
小马甲应助ywl采纳,获得10
16秒前
科研助理完成签到,获得积分10
16秒前
16秒前
17秒前
Akim应助王鹏采纳,获得10
17秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234076
求助须知:如何正确求助?哪些是违规求助? 2880478
关于积分的说明 8215669
捐赠科研通 2548044
什么是DOI,文献DOI怎么找? 1377420
科研通“疑难数据库(出版商)”最低求助积分说明 647912
邀请新用户注册赠送积分活动 623263