Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI

计算机科学 人工智能 分割 深度学习 特征(语言学) 模式识别(心理学) 卷积神经网络 特征提取 图像分割 计算机视觉 语言学 哲学
作者
Zhiqin Zhu,Xianyu He,Guanqiu Qi,Yuanyuan Li,Baisen Cong,Yü Liu
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 376-387 被引量:431
标识
DOI:10.1016/j.inffus.2022.10.022
摘要

Brain tumor segmentation in multimodal MRI has great significance in clinical diagnosis and treatment. The utilization of multimodal information plays a crucial role in brain tumor segmentation. However, most existing methods focus on the extraction and selection of deep semantic features, while ignoring some features with specific meaning and importance to the segmentation problem. In this paper, we propose a brain tumor segmentation method based on the fusion of deep semantics and edge information in multimodal MRI, aiming to achieve a more sufficient utilization of multimodal information for accurate segmentation. The proposed method mainly consists of a semantic segmentation module, an edge detection module and a feature fusion module. In the semantic segmentation module, the Swin Transformer is adopted to extract semantic features and a shifted patch tokenization strategy is introduced for better training. The edge detection module is designed based on convolutional neural networks (CNNs) and an edge spatial attention block (ESAB) is presented for feature enhancement. The feature fusion module aims to fuse the extracted semantic and edge features, and we design a multi-feature inference block (MFIB) based on graph convolution to perform feature reasoning and information dissemination for effective feature fusion. The proposed method is validated on the popular BraTS benchmarks. The experimental results verify that the proposed method outperforms a number of state-of-the-art brain tumor segmentation methods. The source code of the proposed method is available at https://github.com/HXY-99/brats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助时不言采纳,获得30
1秒前
不懂发布了新的文献求助10
1秒前
1秒前
1秒前
宋依依发布了新的文献求助10
2秒前
霸气剑通完成签到,获得积分10
2秒前
慕青应助逝水无痕采纳,获得10
2秒前
4秒前
腼腆的雅绿完成签到,获得积分20
6秒前
斯文败类应助风音赫莱森采纳,获得30
6秒前
7秒前
7秒前
7秒前
9秒前
9秒前
不懂完成签到,获得积分10
10秒前
11秒前
11秒前
Eom发布了新的文献求助10
12秒前
yoyo完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
mabenchem完成签到,获得积分20
13秒前
14秒前
KKKK完成签到,获得积分10
14秒前
sunzhengkui完成签到,获得积分10
15秒前
务实的夏菡完成签到,获得积分10
15秒前
cfy完成签到,获得积分10
16秒前
KKKK发布了新的文献求助10
17秒前
mabenchem发布了新的文献求助10
17秒前
Marilinta发布了新的文献求助10
17秒前
Puffkten发布了新的文献求助10
17秒前
17秒前
18秒前
小蘑菇应助小寒同学采纳,获得10
18秒前
霸气剑通发布了新的文献求助10
19秒前
19秒前
Akim应助浮浮世世采纳,获得10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704