亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI

计算机科学 人工智能 分割 深度学习 特征(语言学) 模式识别(心理学) 卷积神经网络 特征提取 图像分割 计算机视觉 语言学 哲学
作者
Zhiqin Zhu,Xianyu He,Guanqiu Qi,Yuanyuan Li,Baisen Cong,Yü Liu
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 376-387 被引量:431
标识
DOI:10.1016/j.inffus.2022.10.022
摘要

Brain tumor segmentation in multimodal MRI has great significance in clinical diagnosis and treatment. The utilization of multimodal information plays a crucial role in brain tumor segmentation. However, most existing methods focus on the extraction and selection of deep semantic features, while ignoring some features with specific meaning and importance to the segmentation problem. In this paper, we propose a brain tumor segmentation method based on the fusion of deep semantics and edge information in multimodal MRI, aiming to achieve a more sufficient utilization of multimodal information for accurate segmentation. The proposed method mainly consists of a semantic segmentation module, an edge detection module and a feature fusion module. In the semantic segmentation module, the Swin Transformer is adopted to extract semantic features and a shifted patch tokenization strategy is introduced for better training. The edge detection module is designed based on convolutional neural networks (CNNs) and an edge spatial attention block (ESAB) is presented for feature enhancement. The feature fusion module aims to fuse the extracted semantic and edge features, and we design a multi-feature inference block (MFIB) based on graph convolution to perform feature reasoning and information dissemination for effective feature fusion. The proposed method is validated on the popular BraTS benchmarks. The experimental results verify that the proposed method outperforms a number of state-of-the-art brain tumor segmentation methods. The source code of the proposed method is available at https://github.com/HXY-99/brats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Naming采纳,获得10
2秒前
Forever完成签到 ,获得积分10
5秒前
祖宛凝完成签到,获得积分10
8秒前
木康薛完成签到,获得积分10
15秒前
Yuki完成签到 ,获得积分10
23秒前
木康薛发布了新的文献求助10
23秒前
欣欣完成签到 ,获得积分10
26秒前
28秒前
传奇3应助碧蓝的冰绿采纳,获得10
32秒前
renhuizhi完成签到,获得积分10
1分钟前
1分钟前
玛卡巴卡完成签到,获得积分10
1分钟前
shanyuyulai完成签到 ,获得积分10
1分钟前
2分钟前
华仔应助Sun采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
kei完成签到 ,获得积分10
3分钟前
魔幻的芳完成签到,获得积分10
4分钟前
火星上的宝马完成签到,获得积分10
4分钟前
悲凉的忆南完成签到,获得积分10
4分钟前
陈旧完成签到,获得积分10
4分钟前
赘婿应助laolaolao采纳,获得10
4分钟前
欣欣子完成签到,获得积分10
4分钟前
sunstar完成签到,获得积分10
4分钟前
yxl完成签到,获得积分10
4分钟前
可耐的盈完成签到,获得积分10
4分钟前
绿毛水怪完成签到,获得积分10
4分钟前
4分钟前
lsc完成签到,获得积分10
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
小fei完成签到,获得积分10
4分钟前
麻辣薯条完成签到,获得积分10
4分钟前
斯文酒精灯完成签到,获得积分10
4分钟前
时尚身影完成签到,获得积分10
4分钟前
流苏完成签到,获得积分0
5分钟前
流苏2完成签到,获得积分10
5分钟前
5分钟前
5分钟前
cuicui发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634809
求助须知:如何正确求助?哪些是违规求助? 4733916
关于积分的说明 14989314
捐赠科研通 4792506
什么是DOI,文献DOI怎么找? 2559636
邀请新用户注册赠送积分活动 1519967
关于科研通互助平台的介绍 1480053