亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transcranial Magnetic Stimulation–Based Machine Learning Prediction of Tumor Grading in Motor-Eloquent Gliomas

胶质瘤 分级(工程) 医学 磁刺激 磁共振成像 内科学 放射科 刺激 工程类 土木工程 癌症研究
作者
José Pedro Lavrador,Ana Mirallave-Pescador,Christos Soumpasis,Alba Díaz Baamonde,Jahard Aliaga-Arias,Asfand Baig Mirza,Sabina Patel,Juan Miguel Mosquera,Richard Gullan,Keyoumars Ashkan,Ranjeev Bhangoo,Francesco Vergani
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
标识
DOI:10.1227/neu.0000000000002902
摘要

Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation.This was a retrospective cohort study of patients who underwent surgery for motor-eloquent gliomas between 2018 and 2022. Ten healthy subjects were included. Preoperative nTMS-derived variables were collected: resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr)-abnormal if above 10%-and cortical excitability score-number of abnormal iRMTrs. World Health Organization (WHO) grade and molecular profile were collected to characterize each tumor. ML models were fitted to the data after statistical feature selection to predict tumor grade.A total of 177 patients were recruited: WHO grade 2-32 patients, WHO grade 3-65 patients, and WHO grade 4-80 patients. For the upper limb, abnormal iRMTr were identified in 22.7% of WHO grade 2, 62.5% of WHO grade 3, and 75.4% of WHO grade 4 patients. For the lower limb, iRMTr was abnormal in 23.1% of WHO grade 2, 67.6% of WHO grade 3%, and 63.6% of WHO grade 4 patients. Cortical excitability score (P = .04) was statistically significantly related with WHO grading. Using these variables as predictors, the ML model had an accuracy of 0.57 to predict WHO grade 4 lesions. In subgroup analysis of high-grade gliomas vs low-grade gliomas, the accuracy for high-grade gliomas prediction increased to 0.83. The inclusion of molecular data into the model-IDH mutation and 1p19q codeletion status-increases the accuracy of the model in predicting tumor grading (0.95 and 0.74, respectively).ML algorithms based on nTMS-derived interhemispheric excitability assessment provide accurate predictions of HGGs affecting the motor pathway. Their accuracy is further increased when molecular data are fitted onto the model paving the way for a joint preoperative approach with radiogenomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萱萱发布了新的文献求助100
18秒前
39秒前
cfghjj发布了新的文献求助10
42秒前
冷艳玉米完成签到,获得积分10
1分钟前
1分钟前
欧阳孤风发布了新的文献求助10
1分钟前
欧阳孤风完成签到,获得积分10
1分钟前
1分钟前
wu8577完成签到 ,获得积分10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得30
1分钟前
科研通AI5应助Marciu33采纳,获得10
2分钟前
李爱国应助泠月采纳,获得10
2分钟前
搜集达人应助cfghjj采纳,获得10
2分钟前
潇洒的奇异果完成签到,获得积分10
3分钟前
希望天下0贩的0应助Aaaaa采纳,获得10
3分钟前
莱芙完成签到 ,获得积分10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
Aaaaa发布了新的文献求助10
4分钟前
4分钟前
早坂爱发布了新的文献求助10
4分钟前
酷波er应助早坂爱采纳,获得10
5分钟前
烟花应助三块石头采纳,获得10
5分钟前
enternow完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Liiiiiiiiii发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
三块石头发布了新的文献求助10
5分钟前
双手外科结完成签到,获得积分10
6分钟前
LiChard完成签到 ,获得积分10
6分钟前
6分钟前
mmm发布了新的文献求助10
6分钟前
斯文败类应助mmm采纳,获得10
6分钟前
6分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963174
求助须知:如何正确求助?哪些是违规求助? 3509081
关于积分的说明 11145049
捐赠科研通 3242176
什么是DOI,文献DOI怎么找? 1791759
邀请新用户注册赠送积分活动 873146
科研通“疑难数据库(出版商)”最低求助积分说明 803634