已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transcranial Magnetic Stimulation–Based Machine Learning Prediction of Tumor Grading in Motor-Eloquent Gliomas

胶质瘤 分级(工程) 医学 磁刺激 磁共振成像 内科学 放射科 刺激 土木工程 癌症研究 工程类
作者
José Pedro Lavrador,Ana Mirallave-Pescador,Christos Soumpasis,Alba Díaz Baamonde,Jahard Aliaga-Arias,Asfand Baig Mirza,Sabina Patel,Juan Miguel Mosquera,Richard Gullan,Keyoumars Ashkan,Ranjeev Bhangoo,Francesco Vergani
出处
期刊:Neurosurgery [Oxford University Press]
标识
DOI:10.1227/neu.0000000000002902
摘要

Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation.This was a retrospective cohort study of patients who underwent surgery for motor-eloquent gliomas between 2018 and 2022. Ten healthy subjects were included. Preoperative nTMS-derived variables were collected: resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr)-abnormal if above 10%-and cortical excitability score-number of abnormal iRMTrs. World Health Organization (WHO) grade and molecular profile were collected to characterize each tumor. ML models were fitted to the data after statistical feature selection to predict tumor grade.A total of 177 patients were recruited: WHO grade 2-32 patients, WHO grade 3-65 patients, and WHO grade 4-80 patients. For the upper limb, abnormal iRMTr were identified in 22.7% of WHO grade 2, 62.5% of WHO grade 3, and 75.4% of WHO grade 4 patients. For the lower limb, iRMTr was abnormal in 23.1% of WHO grade 2, 67.6% of WHO grade 3%, and 63.6% of WHO grade 4 patients. Cortical excitability score (P = .04) was statistically significantly related with WHO grading. Using these variables as predictors, the ML model had an accuracy of 0.57 to predict WHO grade 4 lesions. In subgroup analysis of high-grade gliomas vs low-grade gliomas, the accuracy for high-grade gliomas prediction increased to 0.83. The inclusion of molecular data into the model-IDH mutation and 1p19q codeletion status-increases the accuracy of the model in predicting tumor grading (0.95 and 0.74, respectively).ML algorithms based on nTMS-derived interhemispheric excitability assessment provide accurate predictions of HGGs affecting the motor pathway. Their accuracy is further increased when molecular data are fitted onto the model paving the way for a joint preoperative approach with radiogenomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dkx完成签到 ,获得积分10
刚刚
桉豆完成签到 ,获得积分10
1秒前
gy发布了新的文献求助10
1秒前
2秒前
2秒前
小蝶完成签到 ,获得积分10
2秒前
iuuuu完成签到 ,获得积分10
3秒前
贪玩丸子完成签到 ,获得积分10
3秒前
Ancoes发布了新的文献求助10
4秒前
遇上就这样吧完成签到,获得积分0
4秒前
柔弱熊猫完成签到 ,获得积分10
4秒前
lucy完成签到,获得积分10
5秒前
Criminology34完成签到,获得积分0
5秒前
lucy发布了新的文献求助10
8秒前
JamesPei应助KlayPatrick采纳,获得10
9秒前
澄子完成签到 ,获得积分0
9秒前
10秒前
Owen应助从心从心采纳,获得10
10秒前
乌拉拉啦啦啦完成签到 ,获得积分10
10秒前
难过的念桃完成签到 ,获得积分10
13秒前
科研通AI6应助Warden采纳,获得10
13秒前
14秒前
追梦人完成签到 ,获得积分10
14秒前
赵一谋发布了新的文献求助10
15秒前
重要的鱼发布了新的文献求助10
15秒前
阿翼完成签到 ,获得积分10
16秒前
16秒前
乐乐应助FightPeng采纳,获得10
17秒前
张涛完成签到 ,获得积分10
18秒前
比青云完成签到,获得积分10
18秒前
hx完成签到 ,获得积分10
18秒前
小神仙完成签到 ,获得积分10
18秒前
Monnine完成签到,获得积分10
18秒前
zkygmu发布了新的文献求助10
19秒前
Cope完成签到 ,获得积分10
20秒前
崔灿完成签到 ,获得积分10
20秒前
传统的幻梦完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644285
求助须知:如何正确求助?哪些是违规求助? 4763340
关于积分的说明 15024405
捐赠科研通 4802493
什么是DOI,文献DOI怎么找? 2567479
邀请新用户注册赠送积分活动 1525242
关于科研通互助平台的介绍 1484674