Exploiting Geometric Features via Hierarchical Graph Pyramid Transformer for Cancer Diagnosis using Histopathological Images

人工智能 模式识别(心理学) 计算机科学 特征提取 计算机视觉 图形 理论计算机科学
作者
Mingxin Liu,Yunzan Liu,Pengbo Xu,Hui Cui,Jing Ke,Jiquan Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2888-2900 被引量:1
标识
DOI:10.1109/tmi.2024.3381994
摘要

Cancer is widely recognized as the primary cause of mortality worldwide, and pathology analysis plays a pivotal role in achieving accurate cancer diagnosis. The intricate representation of features in histopathological images encompasses abundant information crucial for disease diagnosis, regarding cell appearance, tumor microenvironment, and geometric characteristics. However, recent deep learning methods have not adequately exploited geometric features for pathological image classification due to the absence of effective descriptors that can capture both cell distribution and gathering patterns, which often serve as potent indicators. In this paper, inspired by clinical practice, a Hierarchical Graph Pyramid Transformer (HGPT) is proposed to guide pathological image classification by effectively exploiting a geometric representation of tissue distribution which was ignored by existing state-of-the-art methods. First, a graph representation is constructed according to morphological feature of input pathological image and learn geometric representation through the proposed multi-head graph aggregator. Then, the image and its graph representation are feed into the transformer encoder layer to model long-range dependency. Finally, a locality feature enhancement block is designed to enhance the 2D local representation of feature embedding, which is not well explored in the existing vision transformers. An extensive experimental study is conducted on Kather-5K, MHIST, NCT-CRC-HE, and GasHisSDB for binary or multi-category classification of multiple cancer types. Results demonstrated that our method is capable of consistently reaching superior classification outcomes for histopathological images, which provide an effective diagnostic tool for malignant tumors in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的晓山完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
方伟达发布了新的文献求助10
2秒前
科研通AI5应助火星上藏鸟采纳,获得30
2秒前
3秒前
脑洞疼应助LUNAr采纳,获得100
3秒前
猪猪hero发布了新的文献求助10
3秒前
搞怪路灯完成签到,获得积分10
3秒前
大脑袋应助碧蓝的钢铁侠采纳,获得30
3秒前
司婷婷发布了新的文献求助10
3秒前
3秒前
全网无同名完成签到,获得积分10
4秒前
2345应助洛敏夕5743采纳,获得20
4秒前
4秒前
隐形曼青应助水电费采纳,获得10
5秒前
标致的万宝路完成签到 ,获得积分20
5秒前
小鱼发布了新的文献求助10
5秒前
晏子发布了新的文献求助20
5秒前
5秒前
顾矜应助杨江丽采纳,获得30
5秒前
Hello应助伏尾窗的猫采纳,获得10
5秒前
Yoki发布了新的文献求助80
5秒前
Amber完成签到,获得积分10
6秒前
Orange应助忐忑的大炮采纳,获得10
6秒前
林夕发布了新的文献求助10
6秒前
科研通AI5应助BILNQPL采纳,获得10
6秒前
王恩惠发布了新的文献求助10
7秒前
科目三应助jdmeme采纳,获得10
7秒前
快哉快哉完成签到,获得积分20
7秒前
8秒前
8秒前
focco发布了新的文献求助10
8秒前
8秒前
iBuprofen发布了新的文献求助10
9秒前
共享精神应助咩咩采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825