PMC-LLaMA: toward building open-source language models for medicine

开源 计算机科学 领域(数学分析) 过程(计算) 生成模型 生成语法 人工智能 数据科学 自然语言处理 程序设计语言 软件 数学 数学分析
作者
Chaoyi Wu,Wei‐Xiong Lin,Xiaoman Zhang,Ya Zhang,Weidi Xie,Yanfeng Wang
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
被引量:8
标识
DOI:10.1093/jamia/ocae045
摘要

Abstract Objective Recently, large language models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering (QA) situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this article, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Materials and methods We adapt a general-purpose LLM toward the medical domain, involving data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive domain-specific instruction fine-tuning, encompassing medical QA, rationale for reasoning, and conversational dialogues with 202M tokens. Results While evaluating various public medical QA benchmarks and manual rating, our lightweight PMC-LLaMA, which consists of only 13B parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, and datasets for instruction tuning will be released to the research community. Discussion Our contributions are 3-fold: (1) we build up an open-source LLM toward the medical domain. We believe the proposed PMC-LLaMA model can promote further development of foundation models in medicine, serving as a medical trainable basic generative language backbone; (2) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component, demonstrating how different training data and model scales affect medical LLMs; (3) we contribute a large-scale, comprehensive dataset for instruction tuning. Conclusion In this article, we systematically investigate the process of building up an open-source medical-specific LLM, PMC-LLaMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whitepiece完成签到,获得积分10
1秒前
向晨完成签到,获得积分10
2秒前
4秒前
6秒前
打打应助111采纳,获得10
9秒前
月yue完成签到,获得积分10
10秒前
月yue发布了新的文献求助10
13秒前
13秒前
salty完成签到 ,获得积分10
13秒前
16秒前
18秒前
雪白小猫咪完成签到,获得积分10
18秒前
fangplus发布了新的文献求助10
18秒前
111发布了新的文献求助10
21秒前
姜建正完成签到,获得积分10
27秒前
Singularity应助文艺鞋垫采纳,获得20
29秒前
30秒前
寒桥完成签到,获得积分10
31秒前
高贵的书包完成签到,获得积分10
34秒前
39秒前
麻薯头头发布了新的文献求助10
44秒前
45秒前
nianshu完成签到 ,获得积分10
46秒前
111发布了新的文献求助10
48秒前
fangplus完成签到,获得积分10
48秒前
心已死何来心完成签到,获得积分10
49秒前
墨瞳发布了新的文献求助10
50秒前
51秒前
51秒前
善良书蕾完成签到,获得积分10
52秒前
Vicki完成签到,获得积分10
53秒前
deadpool完成签到,获得积分10
54秒前
小飞侠完成签到,获得积分10
54秒前
淳于安筠完成签到,获得积分10
54秒前
56秒前
xiaozhuzhu发布了新的文献求助10
57秒前
bestbanana发布了新的文献求助10
58秒前
小吉发布了新的文献求助10
59秒前
彤光赫显完成签到 ,获得积分10
1分钟前
春天的粥完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023