BudsAuth: Towards Gesture-Wise Continuous User Authentication Through Earbuds Vibration Sensing

计算机科学 手势 认证(法律) 手势识别 语音识别 人机交互 计算机视觉 人工智能 计算机网络 计算机安全
作者
Yong Wang,Tianyu Yang,Chunxiao Wang,Feng Li,Pengfei Hu,Yiran Shen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 22007-22020 被引量:2
标识
DOI:10.1109/jiot.2024.3380811
摘要

The surge in popularity of wireless headphones, particularly wireless earbuds, as smart wearables, has been notable in recent years. These devices, empowered by artificial intelligence (AI), are broadening their utility in areas such as speech recognition, augmented reality, pose recognition, and health care monitoring, thereby enriching user experiences through novel interactive interfaces driven by embedded sensors. However, the widespread adoption of wireless earbuds has spurred concerns regarding security and privacy, necessitating robust bespoke security measures. Despite the miniaturization of mobile chips enabling the integration of sophisticated algorithms into smart wearables, the research and industrial communities have yet to accord adequate attention to earbud security. This paper focuses on empowering wireless earbuds to authenticate their legitimate users, tackling the challenges associated with conventional authentication methods. Instead of relying on input interface authentication methods like PIN or lock patterns, this research delves into leveraging Inertial Measurement Unit (IMU) data collected during interactions with devices to extract novel biometric features, presenting an alternative approach that nonetheless confronts challenges related to signal capture and interference. Consequently, we propose and design BudsAuth, an implicit user authentication framework that harnesses built-in IMU sensors in smart earbuds to capture vibration signals induced by on-face touching interactions with the earbuds. These vibrations are utilized to deliver continuous and implicit user authentication with high precision and compatibility across various earbud models. Extensive evaluation demonstrates BudsAuth's capability to achieve an Equal Error Rate (EER) of 0.0003, representing an approximate 99.97% accuracy with seven consecutive samples of interactive gestures for implicit authentication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助nana采纳,获得30
1秒前
2秒前
3秒前
chenshen发布了新的文献求助10
4秒前
乌龟娟发布了新的文献求助10
5秒前
6秒前
大模型应助zheli采纳,获得10
6秒前
9秒前
慕青应助王加冕采纳,获得30
9秒前
洁净的哈密瓜完成签到,获得积分10
9秒前
Rachel完成签到,获得积分10
10秒前
咕咕咕完成签到 ,获得积分10
10秒前
万能图书馆应助chenshen采纳,获得10
11秒前
Owen应助会飞的野马采纳,获得30
11秒前
12秒前
VicVic发布了新的文献求助10
12秒前
12秒前
莫宛发布了新的文献求助10
14秒前
月初完成签到 ,获得积分10
15秒前
17秒前
大森发布了新的文献求助10
17秒前
Bei不歌发布了新的文献求助10
17秒前
lin应助皮皮采纳,获得10
17秒前
无花果应助mage采纳,获得10
18秒前
周老大完成签到,获得积分10
18秒前
慕青应助淡水痕采纳,获得10
21秒前
22秒前
24秒前
27秒前
一一应助蒙开心采纳,获得10
27秒前
Luffa完成签到,获得积分10
28秒前
yimu完成签到,获得积分10
28秒前
29秒前
30秒前
杰瑞完成签到,获得积分10
31秒前
小树苗发布了新的文献求助10
31秒前
32秒前
Bei不歌完成签到,获得积分10
33秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260051
求助须知:如何正确求助?哪些是违规求助? 2901415
关于积分的说明 8315408
捐赠科研通 2570932
什么是DOI,文献DOI怎么找? 1396761
科研通“疑难数据库(出版商)”最低求助积分说明 653558
邀请新用户注册赠送积分活动 631979