MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lixin Lu,Wei Lü,Yang Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Mia采纳,获得20
刚刚
所所应助吃点红糖馒头采纳,获得10
刚刚
今后应助PSCs采纳,获得10
刚刚
1秒前
duguqiubai4发布了新的文献求助10
1秒前
独特的沛凝完成签到,获得积分10
3秒前
思源应助淇淇怪怪采纳,获得10
3秒前
领导范儿应助徐慕源采纳,获得10
3秒前
听粥完成签到,获得积分10
4秒前
高高迎蓉完成签到,获得积分10
4秒前
豆花完成签到,获得积分10
4秒前
SYLH应助风趣的无剑采纳,获得10
4秒前
悲伤水凝胶完成签到,获得积分10
4秒前
鲸鱼完成签到,获得积分10
6秒前
huangqinxue完成签到,获得积分10
6秒前
7秒前
7秒前
Tina完成签到,获得积分10
7秒前
电催化皮皮完成签到,获得积分10
7秒前
大模型应助阿蒙采纳,获得10
8秒前
duguqiubai4完成签到,获得积分10
8秒前
9秒前
meta完成签到,获得积分10
9秒前
大饼完成签到,获得积分10
10秒前
爆米花应助WJM采纳,获得10
10秒前
xiexuqin完成签到,获得积分10
10秒前
10秒前
silentJeremy发布了新的文献求助200
11秒前
JonyiCheng完成签到,获得积分10
11秒前
科研通AI5应助典雅又夏采纳,获得10
12秒前
风趣的无剑完成签到,获得积分10
12秒前
12秒前
anpucle发布了新的文献求助10
12秒前
跳不起来的大神完成签到 ,获得积分10
12秒前
科研乐色完成签到,获得积分10
12秒前
Drew完成签到,获得积分10
14秒前
挤爆沙丁鱼完成签到 ,获得积分10
14秒前
彭于晏应助fff采纳,获得10
14秒前
14秒前
Agernon应助yaya采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678