MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘厚麟发布了新的文献求助10
1秒前
后会无期发布了新的文献求助10
2秒前
Lucas应助王王碎冰冰采纳,获得10
2秒前
yznfly应助Hi采纳,获得20
2秒前
1123发布了新的文献求助10
3秒前
小橘子会发光完成签到,获得积分10
3秒前
犹豫的云朵完成签到,获得积分10
3秒前
zj发布了新的文献求助10
4秒前
asdfzxcv应助xiao采纳,获得10
5秒前
小马甲应助XXXX采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
球球完成签到,获得积分10
6秒前
今后应助yao chen采纳,获得10
8秒前
9秒前
Ava应助小白兔采纳,获得20
9秒前
zj完成签到,获得积分10
10秒前
smh完成签到,获得积分10
11秒前
百事可乐完成签到,获得积分10
11秒前
浮游应助开放的起眸采纳,获得10
11秒前
miaojuly完成签到,获得积分10
11秒前
12秒前
13秒前
NexusExplorer应助tonyliking采纳,获得10
13秒前
景向发布了新的文献求助30
14秒前
14秒前
14秒前
15秒前
day关闭了day文献求助
15秒前
Ivy完成签到,获得积分10
16秒前
16秒前
bkagyin应助1123采纳,获得10
17秒前
科研通AI6应助zhendezy采纳,获得30
17秒前
17秒前
18秒前
XXXX发布了新的文献求助10
18秒前
大气的代芙完成签到,获得积分10
18秒前
19秒前
斯文败类应助mumufan采纳,获得10
19秒前
谦虚低调接地气完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913