MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
粗暴的元柏完成签到 ,获得积分10
1秒前
君莫笑发布了新的文献求助10
3秒前
帅气寒香完成签到,获得积分10
4秒前
JamesPei应助木木采纳,获得10
4秒前
英俊的铭应助小杨采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
天真的半莲完成签到,获得积分10
6秒前
我还好发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
花笙米发布了新的文献求助10
9秒前
彭于晏应助拓跋天思采纳,获得20
10秒前
kkkkpoa完成签到,获得积分10
10秒前
小二郎应助让我睡采纳,获得10
10秒前
bzmuzxy发布了新的文献求助10
11秒前
浮游应助任性醉山采纳,获得10
12秒前
芝麻糊应助任性醉山采纳,获得10
12秒前
奋斗花生完成签到 ,获得积分10
13秒前
mumu_2025000发布了新的文献求助10
14秒前
ding应助克里斯就是逊啦采纳,获得10
14秒前
14秒前
CC1030完成签到 ,获得积分10
14秒前
红色流星完成签到 ,获得积分10
15秒前
16秒前
乐乐应助滟滟采纳,获得10
16秒前
17秒前
18秒前
18秒前
20秒前
TRACEY完成签到,获得积分10
21秒前
Qy05完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
让我睡发布了新的文献求助10
22秒前
23秒前
龙俊利发布了新的文献求助10
23秒前
木木发布了新的文献求助10
24秒前
kkk发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492865
求助须知:如何正确求助?哪些是违规求助? 4590758
关于积分的说明 14432450
捐赠科研通 4523400
什么是DOI,文献DOI怎么找? 2478286
邀请新用户注册赠送积分活动 1463327
关于科研通互助平台的介绍 1436054