已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi只熊发布了新的文献求助20
1秒前
Kylin完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
赘婿应助yi只熊采纳,获得20
9秒前
Alex应助科研通管家采纳,获得20
10秒前
gkads应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
火火发布了新的文献求助10
10秒前
Trinka完成签到,获得积分10
12秒前
JamesPei应助zhuxiaoyue采纳,获得10
13秒前
顺心的笑珊完成签到,获得积分10
16秒前
羞涩的傲菡完成签到,获得积分10
20秒前
22秒前
脑洞疼应助顺心的笑珊采纳,获得10
23秒前
27秒前
冷艳的语雪完成签到 ,获得积分10
28秒前
Amelie完成签到 ,获得积分10
29秒前
songshuyu完成签到,获得积分10
31秒前
沧海静音发布了新的文献求助10
31秒前
32秒前
浮游应助Hector采纳,获得10
36秒前
ZB完成签到,获得积分10
37秒前
科研通AI6应助尊敬的便当采纳,获得10
38秒前
dadadsad完成签到,获得积分10
41秒前
42秒前
kentonchow应助mmyhn采纳,获得30
42秒前
42秒前
三泥完成签到,获得积分10
46秒前
麦乐酷发布了新的文献求助10
46秒前
大个应助白杨采纳,获得10
46秒前
刘海清发布了新的文献求助10
47秒前
50秒前
imprint完成签到 ,获得积分10
51秒前
52秒前
很酷的妞子完成签到 ,获得积分10
52秒前
shushu完成签到 ,获得积分10
52秒前
yaolei完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528