MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (5): 1281-1305 被引量:3
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
完美世界应助Perrylin718采纳,获得10
3秒前
王艺霖发布了新的文献求助30
3秒前
TORKANOW发布了新的文献求助20
3秒前
4秒前
WHL发布了新的文献求助10
5秒前
汉堡包应助Rururu采纳,获得10
6秒前
潺潺流水完成签到,获得积分10
6秒前
LIO发布了新的文献求助20
7秒前
7秒前
杨自强发布了新的文献求助10
9秒前
9秒前
lin发布了新的文献求助30
10秒前
11秒前
生如夏花完成签到,获得积分10
11秒前
couseware发布了新的文献求助10
12秒前
阮大帅气完成签到,获得积分10
12秒前
Aimee发布了新的文献求助30
13秒前
哈哈完成签到,获得积分10
13秒前
李丝竹发布了新的文献求助20
13秒前
13秒前
科研通AI5应助Jason采纳,获得10
14秒前
juqiu完成签到,获得积分10
15秒前
15秒前
科研通AI5应助vicky采纳,获得10
15秒前
16秒前
17秒前
达达发布了新的文献求助10
17秒前
紫芋林完成签到,获得积分10
18秒前
13643769609发布了新的文献求助10
18秒前
19秒前
19秒前
研友_VZG7GZ应助呆头鹅采纳,获得20
20秒前
20秒前
汉堡包应助徐驰采纳,获得10
21秒前
123发布了新的文献求助10
22秒前
852应助Aimee采纳,获得10
23秒前
波吉发布了新的文献求助10
24秒前
歌尔德蒙发布了新的文献求助10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110