MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lixin Lu,Wei Lü,Yang Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xii完成签到 ,获得积分10
2秒前
土豪的灵竹完成签到 ,获得积分10
4秒前
是猪毛啊完成签到,获得积分10
8秒前
言非离完成签到 ,获得积分10
9秒前
现实的曼安完成签到 ,获得积分10
22秒前
ewind完成签到 ,获得积分10
23秒前
英姑应助XiYang采纳,获得10
27秒前
聪慧语山完成签到 ,获得积分10
38秒前
39秒前
今后应助媛媛采纳,获得10
42秒前
Cold-Drink-Shop完成签到,获得积分10
44秒前
XiYang发布了新的文献求助10
46秒前
47秒前
59秒前
teadan完成签到 ,获得积分10
1分钟前
温暖的鸿完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
清爽的柚子完成签到 ,获得积分10
1分钟前
CHSLN完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如意竺完成签到,获得积分10
1分钟前
一定长完成签到 ,获得积分10
1分钟前
中恐完成签到,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
爆米花应助勤劳的乐蕊采纳,获得10
1分钟前
1分钟前
zhaolei完成签到 ,获得积分10
1分钟前
黎威完成签到,获得积分10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
Xiaoping完成签到 ,获得积分10
2分钟前
郑洋完成签到 ,获得积分10
2分钟前
yuntong完成签到 ,获得积分10
2分钟前
likw23完成签到 ,获得积分10
2分钟前
2分钟前
mark33442完成签到,获得积分10
2分钟前
CLTTT完成签到,获得积分10
2分钟前
星辰大海应助Tiago采纳,获得10
2分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344217
求助须知:如何正确求助?哪些是违规求助? 2971187
关于积分的说明 8646929
捐赠科研通 2651472
什么是DOI,文献DOI怎么找? 1451812
科研通“疑难数据库(出版商)”最低求助积分说明 672287
邀请新用户注册赠送积分活动 661796