MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Snoopy采纳,获得10
刚刚
yf2011108002完成签到,获得积分20
刚刚
1秒前
yu发布了新的文献求助10
2秒前
2秒前
HHH发布了新的文献求助10
2秒前
2秒前
2秒前
呆熊完成签到,获得积分10
3秒前
笑点低的铁身完成签到 ,获得积分10
3秒前
4秒前
111完成签到,获得积分10
4秒前
4秒前
薛十七应助温婉的篮球采纳,获得10
5秒前
liang应助狂野傲珊采纳,获得10
5秒前
颜靖仇发布了新的文献求助10
5秒前
Hu发布了新的文献求助10
5秒前
6秒前
6秒前
爆米花应助加油加油采纳,获得10
6秒前
归尘应助岩伴采纳,获得10
6秒前
无花果应助Rosemary采纳,获得10
7秒前
天天快乐应助口羊采纳,获得10
7秒前
huskies发布了新的文献求助10
7秒前
LLCHEN完成签到 ,获得积分10
8秒前
脑洞疼应助lxjjj采纳,获得10
8秒前
皮咻完成签到,获得积分10
9秒前
mooonyue发布了新的文献求助10
9秒前
君君完成签到,获得积分10
10秒前
Aura发布了新的文献求助10
11秒前
12秒前
情怀应助呆熊采纳,获得10
12秒前
13秒前
KKLJOJ发布了新的文献求助10
13秒前
13秒前
13秒前
111发布了新的文献求助10
14秒前
小路发布了新的文献求助10
14秒前
有怀完成签到,获得积分10
16秒前
ZZ完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072971
求助须知:如何正确求助?哪些是违规求助? 4293165
关于积分的说明 13377479
捐赠科研通 4114472
什么是DOI,文献DOI怎么找? 2252995
邀请新用户注册赠送积分活动 1257787
关于科研通互助平台的介绍 1190665