亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李学东完成签到,获得积分10
1秒前
1秒前
维生素完成签到,获得积分10
6秒前
朝槿完成签到 ,获得积分10
8秒前
Criminology34举报超帅水杯求助涉嫌违规
9秒前
荔枝完成签到 ,获得积分10
10秒前
mingjing完成签到 ,获得积分10
15秒前
忽远忽近的她完成签到 ,获得积分10
17秒前
21秒前
ceeray23发布了新的文献求助200
21秒前
小静完成签到,获得积分10
23秒前
25秒前
优雅柏柳发布了新的文献求助10
31秒前
传奇3应助ss采纳,获得10
32秒前
KY发布了新的文献求助10
34秒前
烟花应助优雅柏柳采纳,获得10
36秒前
556发布了新的文献求助10
37秒前
独特的元霜完成签到,获得积分10
42秒前
居子玖完成签到,获得积分20
43秒前
所所应助清醒采纳,获得10
44秒前
优雅柏柳完成签到,获得积分10
45秒前
啦啦应助科研通管家采纳,获得10
46秒前
Tanya47应助科研通管家采纳,获得10
46秒前
bkagyin应助科研通管家采纳,获得30
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
二十七画生完成签到,获得积分10
46秒前
47秒前
47秒前
KY完成签到,获得积分10
49秒前
51秒前
米饭儿完成签到 ,获得积分10
52秒前
赘婿应助Bin采纳,获得10
53秒前
小休完成签到 ,获得积分10
55秒前
pukej完成签到 ,获得积分10
56秒前
yishang发布了新的文献求助10
57秒前
1分钟前
vida完成签到 ,获得积分10
1分钟前
清醒发布了新的文献求助10
1分钟前
adalove完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664014
求助须知:如何正确求助?哪些是违规求助? 4856551
关于积分的说明 15106965
捐赠科研通 4822463
什么是DOI,文献DOI怎么找? 2581455
邀请新用户注册赠送积分活动 1535665
关于科研通互助平台的介绍 1493892