MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助顶天立地采纳,获得10
1秒前
妖精完成签到 ,获得积分10
2秒前
zxt发布了新的文献求助10
2秒前
caiia完成签到,获得积分20
2秒前
兰兰猪头完成签到,获得积分20
3秒前
三得利的乌龙茶完成签到 ,获得积分10
3秒前
斯文败类应助英勇的醉蓝采纳,获得10
5秒前
Qing完成签到,获得积分10
6秒前
一颗煤炭完成签到 ,获得积分0
8秒前
hczong完成签到,获得积分10
9秒前
靓丽的悒完成签到 ,获得积分10
10秒前
10秒前
DDDD发布了新的文献求助10
10秒前
Rylee完成签到,获得积分10
11秒前
11秒前
楼马完成签到 ,获得积分10
12秒前
采花大盗完成签到,获得积分10
14秒前
李静发布了新的文献求助10
14秒前
乱世完成签到,获得积分10
15秒前
15秒前
顶天立地发布了新的文献求助10
16秒前
lxl220发布了新的文献求助10
19秒前
fsf完成签到,获得积分10
20秒前
深情安青应助whisper采纳,获得10
21秒前
zcbb完成签到,获得积分10
21秒前
小齐爱科研完成签到,获得积分10
21秒前
田様应助贪玩的幻姬采纳,获得20
25秒前
撒旦asd发布了新的文献求助10
25秒前
zxt发布了新的文献求助10
26秒前
墨林完成签到,获得积分10
27秒前
27秒前
动听的谷秋完成签到 ,获得积分10
28秒前
正午完成签到,获得积分10
29秒前
29秒前
niuya发布了新的文献求助10
31秒前
34秒前
chen完成签到,获得积分10
35秒前
37秒前
弄香发布了新的文献求助10
37秒前
香蕉觅云应助果粒橙980采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851