MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (5): 1281-1305 被引量:3
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
xiaoE发布了新的文献求助10
1秒前
Season完成签到,获得积分10
2秒前
伯爵完成签到 ,获得积分10
2秒前
害羞的裘完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
肱二头肌完成签到,获得积分10
5秒前
wang完成签到,获得积分0
5秒前
du发布了新的文献求助10
5秒前
5秒前
努力熊熊完成签到,获得积分10
5秒前
研友_5ZlN6L发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
secret完成签到,获得积分10
6秒前
Lin发布了新的文献求助10
7秒前
可爱的函函应助bingsu108采纳,获得10
7秒前
可可完成签到,获得积分10
7秒前
drdouxia发布了新的文献求助10
7秒前
汉堡包应助TT采纳,获得10
8秒前
8秒前
大力水香发布了新的文献求助10
9秒前
克偃统统发布了新的文献求助50
9秒前
9秒前
jiajia发布了新的文献求助10
10秒前
耳机单蹦完成签到,获得积分10
10秒前
暴躁的帽子完成签到,获得积分10
10秒前
JasperChan完成签到,获得积分10
10秒前
慕青应助secret采纳,获得10
11秒前
文竹薄荷完成签到 ,获得积分10
11秒前
12秒前
JasperChan发布了新的文献求助30
12秒前
13秒前
qsxy发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128