MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (5): 1281-1305 被引量:6
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
caoyy发布了新的文献求助10
刚刚
棠棠完成签到 ,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助帅气凝云采纳,获得10
1秒前
余姓懒完成签到,获得积分10
1秒前
小马完成签到,获得积分10
2秒前
2秒前
yy111发布了新的文献求助10
2秒前
奇奇云完成签到,获得积分20
3秒前
海哥哥发布了新的文献求助10
4秒前
Tullips完成签到 ,获得积分10
4秒前
酷波er应助JJ采纳,获得10
4秒前
wwwq发布了新的文献求助10
5秒前
5秒前
6秒前
赘婿应助朱富强采纳,获得30
6秒前
7秒前
7秒前
8秒前
10秒前
lili完成签到,获得积分10
10秒前
范ER完成签到 ,获得积分10
11秒前
简单奎发布了新的文献求助10
11秒前
world完成签到,获得积分10
12秒前
海哥哥完成签到,获得积分10
12秒前
棠棠发布了新的文献求助10
13秒前
白凌风完成签到 ,获得积分10
13秒前
14秒前
尘染完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
成成完成签到,获得积分10
15秒前
小二郎应助须尽欢采纳,获得10
17秒前
酒笙发布了新的文献求助10
18秒前
华仔应助drama_queen采纳,获得10
18秒前
独特平灵完成签到,获得积分10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771127
求助须知:如何正确求助?哪些是违规求助? 5589626
关于积分的说明 15426564
捐赠科研通 4904445
什么是DOI,文献DOI怎么找? 2638788
邀请新用户注册赠送积分活动 1586567
关于科研通互助平台的介绍 1541713