The Feasibility of Implementing Large-Scale Transformers on Multi-FPGA Platforms

现场可编程门阵列 变压器 嵌入式系统 计算机科学 比例(比率) 可靠性工程 电气工程 工程类 电压 地理 地图学
作者
Yu Gao,Juan Camilo Vega,Paul Chow
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.16158
摘要

FPGAs are rarely mentioned when discussing the implementation of large machine learning applications, such as Large Language Models (LLMs), in the data center. There has been much evidence showing that single FPGAs can be competitive with GPUs in performance for some computations, especially for low latency, and often much more efficient when power is considered. This suggests that there is merit to exploring the use of multiple FPGAs for large machine learning applications. The challenge with using multiple FPGAs is that there is no commonly-accepted flow for developing and deploying multi-FPGA applications, i.e., there are no tools to describe a large application, map it to multiple FPGAs and then deploy the application on a multi-FPGA platform. In this paper, we explore the feasibility of implementing large transformers using multiple FPGAs by developing a scalable multi-FPGA platform and some tools to map large applications to the platform. We validate our approach by designing an efficient multi-FPGA version of the I-BERT transformer and implement one encoder using six FPGAs as a working proof-of-concept to show that our platform and tools work. Based on our proof-of-concept prototype and the estimations of performance using the latest FPGAs compared to GPUs, we conclude that there can be a place for FPGAs in the world of large machine learning applications. We demonstrate a promising first step that shows that with the right infrastructure and tools it is reasonable to continue to explore the possible benefits of using FPGAs for applications such as LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHENG_2025应助人小鸭儿大采纳,获得10
1秒前
2秒前
Saunak完成签到,获得积分10
2秒前
嫁个养熊猫的完成签到 ,获得积分10
2秒前
彭于晏应助liuzengzhang666采纳,获得10
3秒前
hygge完成签到,获得积分10
6秒前
幸福妙柏发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
筱噺完成签到,获得积分10
8秒前
Jenny发布了新的文献求助10
11秒前
陈龙完成签到,获得积分10
11秒前
Lignin完成签到,获得积分10
11秒前
黄鲁婧完成签到,获得积分10
11秒前
zy0411发布了新的文献求助10
12秒前
一诺相许完成签到 ,获得积分10
12秒前
背后书雪完成签到 ,获得积分10
15秒前
15秒前
18秒前
内向靖巧发布了新的文献求助10
18秒前
19秒前
北北发布了新的文献求助10
19秒前
gfbh应助人小鸭儿大采纳,获得50
20秒前
画画完成签到,获得积分10
21秒前
23秒前
QQ完成签到 ,获得积分10
23秒前
25秒前
毅然决然必然完成签到,获得积分10
26秒前
30秒前
30秒前
十二发布了新的文献求助20
30秒前
开心绫完成签到,获得积分10
34秒前
科研搬运工完成签到,获得积分0
38秒前
NSS完成签到,获得积分0
39秒前
小方完成签到,获得积分10
40秒前
40秒前
天天快乐应助娇气的雁兰采纳,获得10
41秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343