The Feasibility of Implementing Large-Scale Transformers on Multi-FPGA Platforms

现场可编程门阵列 变压器 嵌入式系统 计算机科学 比例(比率) 可靠性工程 电气工程 工程类 电压 地理 地图学
作者
Yu Gao,Juan Camilo Vega,Paul Chow
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.16158
摘要

FPGAs are rarely mentioned when discussing the implementation of large machine learning applications, such as Large Language Models (LLMs), in the data center. There has been much evidence showing that single FPGAs can be competitive with GPUs in performance for some computations, especially for low latency, and often much more efficient when power is considered. This suggests that there is merit to exploring the use of multiple FPGAs for large machine learning applications. The challenge with using multiple FPGAs is that there is no commonly-accepted flow for developing and deploying multi-FPGA applications, i.e., there are no tools to describe a large application, map it to multiple FPGAs and then deploy the application on a multi-FPGA platform. In this paper, we explore the feasibility of implementing large transformers using multiple FPGAs by developing a scalable multi-FPGA platform and some tools to map large applications to the platform. We validate our approach by designing an efficient multi-FPGA version of the I-BERT transformer and implement one encoder using six FPGAs as a working proof-of-concept to show that our platform and tools work. Based on our proof-of-concept prototype and the estimations of performance using the latest FPGAs compared to GPUs, we conclude that there can be a place for FPGAs in the world of large machine learning applications. We demonstrate a promising first step that shows that with the right infrastructure and tools it is reasonable to continue to explore the possible benefits of using FPGAs for applications such as LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
月亮打盹儿完成签到 ,获得积分10
刚刚
1秒前
1秒前
Nina完成签到 ,获得积分10
2秒前
AA发布了新的文献求助10
3秒前
崔尔蓉发布了新的文献求助10
3秒前
安详流沙完成签到,获得积分10
3秒前
阔达的无剑应助NIUBEN采纳,获得10
6秒前
6秒前
7秒前
WTTTTTFFFFFF发布了新的文献求助10
9秒前
12秒前
赵剑心发布了新的文献求助10
13秒前
NIUBEN完成签到,获得积分10
13秒前
16秒前
包破茧完成签到,获得积分10
16秒前
灵溪发布了新的文献求助10
16秒前
18秒前
谷歌完成签到,获得积分10
18秒前
山娃子发布了新的文献求助10
20秒前
赵剑心完成签到,获得积分10
20秒前
高屋建瓴完成签到,获得积分10
21秒前
23秒前
23秒前
牛太虚完成签到,获得积分10
25秒前
Owen应助adeno采纳,获得10
26秒前
布饭a完成签到 ,获得积分10
26秒前
27秒前
康康发布了新的文献求助10
28秒前
小胖发布了新的文献求助10
29秒前
Pengzhuhuai完成签到 ,获得积分10
31秒前
慕青应助cczz采纳,获得10
31秒前
fang发布了新的文献求助10
32秒前
Polymer72应助zcx采纳,获得10
32秒前
陈伟杰发布了新的文献求助10
34秒前
汪简单完成签到,获得积分20
36秒前
Neo发布了新的文献求助10
37秒前
思源应助失眠的海云采纳,获得10
37秒前
君无名完成签到 ,获得积分10
38秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350975
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675444
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664242