亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Feasibility of Implementing Large-Scale Transformers on Multi-FPGA Platforms

现场可编程门阵列 变压器 嵌入式系统 计算机科学 比例(比率) 可靠性工程 电气工程 工程类 电压 地理 地图学
作者
Yu Gao,Juan Camilo Vega,Paul Chow
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.16158
摘要

FPGAs are rarely mentioned when discussing the implementation of large machine learning applications, such as Large Language Models (LLMs), in the data center. There has been much evidence showing that single FPGAs can be competitive with GPUs in performance for some computations, especially for low latency, and often much more efficient when power is considered. This suggests that there is merit to exploring the use of multiple FPGAs for large machine learning applications. The challenge with using multiple FPGAs is that there is no commonly-accepted flow for developing and deploying multi-FPGA applications, i.e., there are no tools to describe a large application, map it to multiple FPGAs and then deploy the application on a multi-FPGA platform. In this paper, we explore the feasibility of implementing large transformers using multiple FPGAs by developing a scalable multi-FPGA platform and some tools to map large applications to the platform. We validate our approach by designing an efficient multi-FPGA version of the I-BERT transformer and implement one encoder using six FPGAs as a working proof-of-concept to show that our platform and tools work. Based on our proof-of-concept prototype and the estimations of performance using the latest FPGAs compared to GPUs, we conclude that there can be a place for FPGAs in the world of large machine learning applications. We demonstrate a promising first step that shows that with the right infrastructure and tools it is reasonable to continue to explore the possible benefits of using FPGAs for applications such as LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦旋风完成签到,获得积分10
4秒前
潇洒的语蝶完成签到 ,获得积分10
6秒前
12秒前
Bingtao_Lian完成签到 ,获得积分10
32秒前
56秒前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
lhn完成签到 ,获得积分10
1分钟前
蔡翌文完成签到 ,获得积分10
1分钟前
星愿发布了新的文献求助30
1分钟前
共享精神应助jjc采纳,获得10
1分钟前
星辰大海应助星愿采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
猫抓板发布了新的文献求助10
2分钟前
wanci应助小飞采纳,获得10
2分钟前
2分钟前
2分钟前
jane123发布了新的文献求助10
2分钟前
jjc发布了新的文献求助10
2分钟前
2分钟前
小飞发布了新的文献求助10
2分钟前
2分钟前
康宁完成签到,获得积分10
3分钟前
酷波er应助我啊采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426582
求助须知:如何正确求助?哪些是违规求助? 4540281
关于积分的说明 14171923
捐赠科研通 4458061
什么是DOI,文献DOI怎么找? 2444804
邀请新用户注册赠送积分活动 1435870
关于科研通互助平台的介绍 1413309