Loosely Coupled Hybrid Scheduling of Processing and Communication for TSN-Based IMA Systems

调度(生产过程) 计算机科学 处理器调度 分布式计算 计算机网络 工程类 运营管理 资源(消歧)
作者
Xuan Zhou,Feng He,Luxi Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 8884-8895
标识
DOI:10.1109/tii.2024.3373894
摘要

Time-sensitive networking (TSN) has great potential as an airborne network to interconnect modules in integrated modular avionics (IMA) system. For TSN-based IMA system, the hybrid scheduling of processing in modules and communication in TSN can guarantee its real-time performance. However, traditional task-message scheduling methods still lack applicability and scalability due to their incompatibility with the partition-task hierarchical architecture in modules and high complexity brought by the tight coupling of tasks and messages. Partition-message scheduling methods can ensure this applicability and scalability, but cannot coordinate tasks with messages well, thus sacrificing real-time guarantee capabilities. Namely, existing methods cannot comprehensively ensure the scheduling performance, including applicability, real-time, and scalability. Therefore, we propose a novel loosely coupled partition-(task)-message scheduling framework. It takes partitions and messages as scheduling objects and uses tasks as their coordination medium, to overcome the dependencies of existing methods on time-triggered tasks and guarantee applicability. Besides, it can also enhance real-time performance by analyzing task execution boundaries and application-layer end-to-end delays, and improve scalability through parallel optimizing and the incremental solving with block identification and adaptive adjustment. Experiments validate that it can schedule complex systems with up to 150 partitions, 1000 tasks, and 600 messages. Compared with the existing methods, it can accelerate the solving speed by 41% and reduce end-to-end delays by 27%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cat发布了新的文献求助10
刚刚
dove发布了新的文献求助10
1秒前
传奇3应助EasyNan采纳,获得50
1秒前
SYLH应助默默碧空采纳,获得10
2秒前
ww应助默默碧空采纳,获得10
2秒前
2秒前
www完成签到,获得积分10
2秒前
haishuixing2完成签到,获得积分10
3秒前
Daily完成签到,获得积分10
3秒前
英姑应助kiuikiu采纳,获得10
3秒前
3秒前
飞飞飞发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
科研狗发布了新的文献求助10
5秒前
wkjfh举报tracer求助涉嫌违规
5秒前
6秒前
6秒前
6秒前
6秒前
yanyanjun完成签到,获得积分20
7秒前
zhangnan完成签到,获得积分10
7秒前
科研通AI5应助向连虎采纳,获得10
7秒前
上官若男应助zz采纳,获得10
8秒前
8秒前
Daniel2010完成签到,获得积分10
8秒前
8秒前
南西完成签到,获得积分10
8秒前
9秒前
sgssm发布了新的文献求助10
9秒前
caojiarong发布了新的文献求助30
10秒前
Smile发布了新的文献求助10
10秒前
10秒前
11秒前
EasyNan给EasyNan的求助进行了留言
11秒前
1+1发布了新的文献求助10
12秒前
科研通AI5应助高贵的洋葱采纳,获得10
13秒前
Anpu关注了科研通微信公众号
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400