Inverse Design of a Wavelength (De)Multiplexer for 1.55- and 2-μm Wavebands by Using a Hybrid Analog-Digital Method

多路复用器 光通信 反向 多路复用 集成光学 光学 波分复用 电子工程 计算机科学 波长 物理 电信 数学 工程类 几何学
作者
Xuyu Deng,Aolong Sun,Qiyuan Yi,Guanglian Cheng,Sizhe Xing,Jianyang Shi,Ziwei Li,Chao Shen,Yi Zou,Li Shen,Junwen Zhang,Nan Chi
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (15): 5231-5240 被引量:2
标识
DOI:10.1109/jlt.2024.3386668
摘要

Recently, the emerging 2-μm waveband has gained increasing interest due to its great potential for a wide scope of applications. The 2-μm waveband is considered a novel communication window with distinct advantages of lower signal loss, better fabrication tolerance and broader gain bandwidth. Considering the advantages of 2-μm waveband, wavelength division multiplexing of 1.55- and 2-μm wavebands is one of the effective means to solve the current communication capacity crisis. Therefore, wavelength (de)multiplexer for 1.55- and 2-μm wavebands is a crucial component. However, traditional design methods make it challenging to create a wavelength (de)multiplexer with a large bandwidth and compact footprint. Here, we proposed and experimentally demonstrated a wavelength demultiplexer for 1.55- and 2-μm wavebands with an ultra-compact footprint of 3 × 3 μm2 utilizing an inverse design method called hybrid analog-digital algorithm to reduce computational cost and improve the device performance. Based on this algorithm, we further created three adjustable optimization parameters to achieve optimal device performance. We provide detailed explanations for the selection of these optimization parameters. The designed device has experimentally achieved a bandwidth of 100 nm for 1.55- and 2-μm wavebands, with the insertion loss less than 1.2 and 0.9 dB, and the crosstalk less than -17.7 and -16.4 dB, respectively. Furthermore, based on a fabricated wavelength division multiplexing chip, we demonstrated a dual-wavebands data transmission system that achieved a data rate of 138 Gbps at 1550 nm and 84 Gbps at 2004 nm, drawing a promising application for high-speed optical communications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
雨香完成签到,获得积分10
刚刚
城北徐公主完成签到,获得积分10
刚刚
刚刚
马前人发布了新的文献求助10
刚刚
muta完成签到,获得积分10
刚刚
科研通AI6应助bilin采纳,获得10
刚刚
刚刚
Lucas应助自觉夜阑采纳,获得10
刚刚
Krainy77完成签到,获得积分20
刚刚
大方的海蓝完成签到,获得积分10
刚刚
迁移学习完成签到,获得积分10
1秒前
威武的凡桃完成签到,获得积分10
1秒前
zy发布了新的文献求助10
2秒前
zy完成签到 ,获得积分10
3秒前
wualexandra完成签到,获得积分10
3秒前
4秒前
冯冯完成签到 ,获得积分10
5秒前
sunflower完成签到,获得积分0
5秒前
xiaoxixixier完成签到 ,获得积分10
5秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
fei应助科研通管家采纳,获得10
6秒前
安1991应助ljxr采纳,获得30
6秒前
orixero应助科研通管家采纳,获得20
6秒前
Plasmacas完成签到,获得积分10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
xcgh应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
fei应助科研通管家采纳,获得10
6秒前
不倦应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
冯嘉淇完成签到,获得积分10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516585
求助须知:如何正确求助?哪些是违规求助? 4609506
关于积分的说明 14516131
捐赠科研通 4546282
什么是DOI,文献DOI怎么找? 2491148
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444803