Inverse Design of a Wavelength (De)Multiplexer for 1.55- and 2-μm Wavebands by Using a Hybrid Analog-Digital Method

多路复用器 光通信 反向 多路复用 集成光学 光学 波分复用 电子工程 计算机科学 波长 物理 电信 数学 工程类 几何学
作者
Xuyu Deng,Aolong Sun,Qiyuan Yi,Guanglian Cheng,Sizhe Xing,Jianyang Shi,Ziwei Li,Chao Shen,Yi Zou,Li Shen,Junwen Zhang,Nan Chi
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (15): 5231-5240
标识
DOI:10.1109/jlt.2024.3386668
摘要

Recently, the emerging 2-μm waveband has gained increasing interest due to its great potential for a wide scope of applications. The 2-μm waveband is considered a novel communication window with distinct advantages of lower signal loss, better fabrication tolerance and broader gain bandwidth. Considering the advantages of 2-μm waveband, wavelength division multiplexing of 1.55- and 2-μm wavebands is one of the effective means to solve the current communication capacity crisis. Therefore, wavelength (de)multiplexer for 1.55- and 2-μm wavebands is a crucial component. However, traditional design methods make it challenging to create a wavelength (de)multiplexer with a large bandwidth and compact footprint. Here, we proposed and experimentally demonstrated a wavelength demultiplexer for 1.55- and 2-μm wavebands with an ultra-compact footprint of 3 × 3 μm2 utilizing an inverse design method called hybrid analog-digital algorithm to reduce computational cost and improve the device performance. Based on this algorithm, we further created three adjustable optimization parameters to achieve optimal device performance. We provide detailed explanations for the selection of these optimization parameters. The designed device has experimentally achieved a bandwidth of 100 nm for 1.55- and 2-μm wavebands, with the insertion loss less than 1.2 and 0.9 dB, and the crosstalk less than -17.7 and -16.4 dB, respectively. Furthermore, based on a fabricated wavelength division multiplexing chip, we demonstrated a dual-wavebands data transmission system that achieved a data rate of 138 Gbps at 1550 nm and 84 Gbps at 2004 nm, drawing a promising application for high-speed optical communications in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助东北一枝花采纳,获得10
2秒前
xuxu发布了新的文献求助10
3秒前
Honnan完成签到,获得积分10
3秒前
科目三应助温暖幻桃采纳,获得10
3秒前
5秒前
拼搏老鼠完成签到,获得积分20
5秒前
科研通AI2S应助Sean采纳,获得10
5秒前
小马甲应助xmhxpz采纳,获得10
6秒前
Zhouzhou应助张菲茜采纳,获得10
6秒前
小马甲应助宋芝璇采纳,获得10
6秒前
7秒前
东欢乐完成签到,获得积分10
7秒前
烂漫以柳发布了新的文献求助10
10秒前
lalala应助wgcheng采纳,获得10
10秒前
正直的友容应助复杂硬币采纳,获得30
11秒前
科研通AI2S应助Sean采纳,获得10
13秒前
一只耳发布了新的文献求助10
14秒前
Shasa发布了新的文献求助50
14秒前
15秒前
奋斗慕凝完成签到 ,获得积分10
17秒前
瑾昭发布了新的文献求助10
19秒前
XuhuiHuang完成签到 ,获得积分10
20秒前
17852573662完成签到,获得积分10
20秒前
21秒前
宋芝璇完成签到,获得积分10
21秒前
21秒前
21秒前
搜集达人应助坚强莺采纳,获得10
23秒前
充电宝应助xxx采纳,获得10
23秒前
25秒前
砂锅粥发布了新的文献求助10
25秒前
刘亚茹发布了新的文献求助10
26秒前
26秒前
Yuan应助一个晴天采纳,获得10
28秒前
dou完成签到,获得积分10
28秒前
顾矜应助热心市民小红花采纳,获得10
29秒前
科研通AI2S应助莫若舞采纳,获得10
30秒前
32秒前
Thing完成签到,获得积分10
32秒前
刘亚茹完成签到,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115