Inverse Design of a Wavelength (De)Multiplexer for 1.55- and 2-μm Wavebands by Using a Hybrid Analog-Digital Method

多路复用器 光通信 反向 多路复用 集成光学 光学 波分复用 电子工程 计算机科学 波长 物理 电信 数学 工程类 几何学
作者
Xuyu Deng,Aolong Sun,Qiyuan Yi,Guanglian Cheng,Sizhe Xing,Jianyang Shi,Ziwei Li,Chao Shen,Yi Zou,Li Shen,Junwen Zhang,Nan Chi
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (15): 5231-5240 被引量:2
标识
DOI:10.1109/jlt.2024.3386668
摘要

Recently, the emerging 2-μm waveband has gained increasing interest due to its great potential for a wide scope of applications. The 2-μm waveband is considered a novel communication window with distinct advantages of lower signal loss, better fabrication tolerance and broader gain bandwidth. Considering the advantages of 2-μm waveband, wavelength division multiplexing of 1.55- and 2-μm wavebands is one of the effective means to solve the current communication capacity crisis. Therefore, wavelength (de)multiplexer for 1.55- and 2-μm wavebands is a crucial component. However, traditional design methods make it challenging to create a wavelength (de)multiplexer with a large bandwidth and compact footprint. Here, we proposed and experimentally demonstrated a wavelength demultiplexer for 1.55- and 2-μm wavebands with an ultra-compact footprint of 3 × 3 μm2 utilizing an inverse design method called hybrid analog-digital algorithm to reduce computational cost and improve the device performance. Based on this algorithm, we further created three adjustable optimization parameters to achieve optimal device performance. We provide detailed explanations for the selection of these optimization parameters. The designed device has experimentally achieved a bandwidth of 100 nm for 1.55- and 2-μm wavebands, with the insertion loss less than 1.2 and 0.9 dB, and the crosstalk less than -17.7 and -16.4 dB, respectively. Furthermore, based on a fabricated wavelength division multiplexing chip, we demonstrated a dual-wavebands data transmission system that achieved a data rate of 138 Gbps at 1550 nm and 84 Gbps at 2004 nm, drawing a promising application for high-speed optical communications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助郭嘉仪采纳,获得10
1秒前
科研通AI2S应助龙行天下采纳,获得10
3秒前
ce关注了科研通微信公众号
3秒前
4秒前
5秒前
辰辰完成签到 ,获得积分10
8秒前
8秒前
dandna完成签到 ,获得积分10
9秒前
赵海锋发布了新的文献求助10
9秒前
10秒前
10秒前
TTTTT发布了新的文献求助10
10秒前
11秒前
脑洞疼应助婷婷采纳,获得10
14秒前
哦豁拐咯完成签到,获得积分10
15秒前
15秒前
小智0921完成签到,获得积分10
15秒前
anan应助xiaohu采纳,获得20
16秒前
16秒前
老纪1999完成签到,获得积分10
16秒前
XIA发布了新的文献求助10
16秒前
彤彤发布了新的文献求助10
17秒前
静1997完成签到,获得积分20
17秒前
小马甲应助贪玩的寄松采纳,获得10
18秒前
核桃酥发布了新的文献求助10
19秒前
19秒前
静1997发布了新的文献求助10
21秒前
春风十里完成签到,获得积分10
21秒前
科目三应助scifff采纳,获得10
23秒前
23秒前
ce发布了新的文献求助10
24秒前
XIA完成签到,获得积分10
24秒前
27秒前
fred完成签到,获得积分20
27秒前
共享精神应助期颐七采纳,获得10
27秒前
科研通AI6应助2_3_10采纳,获得10
29秒前
灿烂千阳完成签到,获得积分10
29秒前
31秒前
aliderichang完成签到 ,获得积分10
31秒前
fred发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818