Inverse Design of a Wavelength (De)Multiplexer for 1.55- and 2-μm Wavebands by Using a Hybrid Analog-Digital Method

多路复用器 光通信 反向 多路复用 集成光学 光学 波分复用 电子工程 计算机科学 波长 物理 电信 数学 工程类 几何学
作者
Xuyu Deng,Aolong Sun,Qiyuan Yi,Guanglian Cheng,Sizhe Xing,Jianyang Shi,Ziwei Li,Chao Shen,Yi Zou,Li Shen,Junwen Zhang,Nan Chi
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (15): 5231-5240 被引量:2
标识
DOI:10.1109/jlt.2024.3386668
摘要

Recently, the emerging 2-μm waveband has gained increasing interest due to its great potential for a wide scope of applications. The 2-μm waveband is considered a novel communication window with distinct advantages of lower signal loss, better fabrication tolerance and broader gain bandwidth. Considering the advantages of 2-μm waveband, wavelength division multiplexing of 1.55- and 2-μm wavebands is one of the effective means to solve the current communication capacity crisis. Therefore, wavelength (de)multiplexer for 1.55- and 2-μm wavebands is a crucial component. However, traditional design methods make it challenging to create a wavelength (de)multiplexer with a large bandwidth and compact footprint. Here, we proposed and experimentally demonstrated a wavelength demultiplexer for 1.55- and 2-μm wavebands with an ultra-compact footprint of 3 × 3 μm2 utilizing an inverse design method called hybrid analog-digital algorithm to reduce computational cost and improve the device performance. Based on this algorithm, we further created three adjustable optimization parameters to achieve optimal device performance. We provide detailed explanations for the selection of these optimization parameters. The designed device has experimentally achieved a bandwidth of 100 nm for 1.55- and 2-μm wavebands, with the insertion loss less than 1.2 and 0.9 dB, and the crosstalk less than -17.7 and -16.4 dB, respectively. Furthermore, based on a fabricated wavelength division multiplexing chip, we demonstrated a dual-wavebands data transmission system that achieved a data rate of 138 Gbps at 1550 nm and 84 Gbps at 2004 nm, drawing a promising application for high-speed optical communications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
黑囡完成签到,获得积分10
刚刚
宝剑葫芦发布了新的文献求助10
刚刚
1秒前
乐乐应助强健的黄蜂采纳,获得10
1秒前
我是老大应助Grace采纳,获得10
2秒前
2秒前
2秒前
思源应助团子采纳,获得10
2秒前
3秒前
纤云弄巧发布了新的文献求助30
4秒前
4秒前
郭mm完成签到,获得积分10
5秒前
6秒前
hqy完成签到,获得积分10
6秒前
Hello应助矜持采纳,获得10
7秒前
彭于晏应助Tom采纳,获得10
7秒前
7秒前
宋宋完成签到,获得积分10
7秒前
7秒前
evermore完成签到,获得积分10
7秒前
打打应助JiegeSCI采纳,获得10
8秒前
Ava应助皓沐风采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
evermore发布了新的文献求助30
11秒前
11秒前
奶奶的龙应助清墨采纳,获得30
11秒前
帅气的祥完成签到,获得积分10
11秒前
JuliannaBuls96应助xzy998采纳,获得60
12秒前
任性的惜珊完成签到,获得积分10
12秒前
隐形曼青应助icey采纳,获得10
13秒前
十里长亭发布了新的文献求助10
13秒前
隐形曼青应助无心的星月采纳,获得10
13秒前
13秒前
hhhhhheeeeee发布了新的文献求助10
13秒前
CodeCraft应助寂寞的羽毛采纳,获得10
14秒前
14秒前
14秒前
命运线完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728463
求助须知:如何正确求助?哪些是违规求助? 5312850
关于积分的说明 15314159
捐赠科研通 4875631
什么是DOI,文献DOI怎么找? 2618899
邀请新用户注册赠送积分活动 1568458
关于科研通互助平台的介绍 1525134