UAVformer: A Composite Transformer Network for Urban Scene Segmentation of UAV Images

人工智能 计算机视觉 分割 计算机科学 编码器 图像分割 模式识别(心理学) 操作系统
作者
Yi Shi,Xi Liu,Junjie Li,Ling Chen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:133: 109019-109019 被引量:44
标识
DOI:10.1016/j.patcog.2022.109019
摘要

Urban scenes segmentation based on UAV (Unmanned aerial vehicle) view is a fundamental task for the applications of smart city such as city planning, land use monitoring, traffic monitoring, and crowd estimation. While urban scenes in UAV image characteristic by large scale variation of objects size and complexity background, which posed challenges to urban scenes segmentation of UAV image. The feature extracting backbone of existing networks cannot extract complex features of UAV image effectively, which limits the performance of urban scenes segmentation. To design segmentation network capable of extracting features of large scale variation urban ground scenes, this study proposed a novel composite transformer network for urban scenes segmentation of UAV image. A composite backbone with aggregation windows multi-head self-attention transformer blocks is proposed to make the extracted features more representatives by adaptive multi-level features fusion, and the full utilisation of contextual information and local information. Position attention modules are inserted in each stage between encoder and decoder to further enhance the spatial attention of extracted feature maps. Finally, a V-shaped decoder which is capable of utilising multi-level features is designed to get accurately dense prediction. The accuracy of urban scenes segmentation could significantly be enhanced in this way and successfully segmented the large scale variation objects from UAV views. Extensive ablation experiments and comparative experiments for the proposed network have been conducted on the public available urban scenes segmentation datasets for UAV imagery. Experimental results have demonstrated the effectiveness of designed network structure and the superiority of proposed network over state-of-the-art methods. Specifically, reached 53.2% mIoU on the UAVid dataset and 77.6% mIoU on the UDD6 dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑友灵完成签到,获得积分10
1秒前
怂怂鼠发布了新的文献求助10
2秒前
2秒前
Leslie发布了新的文献求助10
2秒前
3秒前
4秒前
喃喃完成签到 ,获得积分10
7秒前
本森完成签到,获得积分10
7秒前
宓广缘发布了新的文献求助10
7秒前
Sean0382发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
Linnnn发布了新的文献求助10
10秒前
wingsan完成签到 ,获得积分10
11秒前
Lin发布了新的文献求助10
11秒前
NexusExplorer应助阳光的道消采纳,获得10
12秒前
Lucas应助阳光的道消采纳,获得10
12秒前
李爱国应助阳光的道消采纳,获得10
12秒前
上官若男应助阳光的道消采纳,获得10
12秒前
领导范儿应助阳光的道消采纳,获得10
12秒前
无花果应助阳光的道消采纳,获得10
12秒前
爆米花应助阳光的道消采纳,获得10
12秒前
12秒前
科研通AI2S应助Qqqq采纳,获得10
13秒前
sky发布了新的文献求助10
14秒前
科研完成签到,获得积分10
14秒前
amo发布了新的文献求助30
15秒前
天天快乐应助Sean0382采纳,获得10
15秒前
裘问薇完成签到,获得积分10
17秒前
17秒前
乔乔完成签到,获得积分10
18秒前
闹闹加油发布了新的文献求助30
19秒前
19秒前
爆米花应助LL采纳,获得10
20秒前
HDJ完成签到,获得积分10
21秒前
111完成签到,获得积分10
22秒前
Leslie完成签到,获得积分10
22秒前
23秒前
bkagyin应助哈哈采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968983
求助须知:如何正确求助?哪些是违规求助? 4226239
关于积分的说明 13162306
捐赠科研通 4013460
什么是DOI,文献DOI怎么找? 2196115
邀请新用户注册赠送积分活动 1209441
关于科研通互助平台的介绍 1123519