UAVformer: A Composite Transformer Network for Urban Scene Segmentation of UAV Images

人工智能 计算机视觉 分割 计算机科学 编码器 图像分割 模式识别(心理学) 操作系统
作者
Yi Shi,Xi Liu,Junjie Li,Ling Chen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:133: 109019-109019 被引量:29
标识
DOI:10.1016/j.patcog.2022.109019
摘要

Urban scenes segmentation based on UAV (Unmanned aerial vehicle) view is a fundamental task for the applications of smart city such as city planning, land use monitoring, traffic monitoring, and crowd estimation. While urban scenes in UAV image characteristic by large scale variation of objects size and complexity background, which posed challenges to urban scenes segmentation of UAV image. The feature extracting backbone of existing networks cannot extract complex features of UAV image effectively, which limits the performance of urban scenes segmentation. To design segmentation network capable of extracting features of large scale variation urban ground scenes, this study proposed a novel composite transformer network for urban scenes segmentation of UAV image. A composite backbone with aggregation windows multi-head self-attention transformer blocks is proposed to make the extracted features more representatives by adaptive multi-level features fusion, and the full utilisation of contextual information and local information. Position attention modules are inserted in each stage between encoder and decoder to further enhance the spatial attention of extracted feature maps. Finally, a V-shaped decoder which is capable of utilising multi-level features is designed to get accurately dense prediction. The accuracy of urban scenes segmentation could significantly be enhanced in this way and successfully segmented the large scale variation objects from UAV views. Extensive ablation experiments and comparative experiments for the proposed network have been conducted on the public available urban scenes segmentation datasets for UAV imagery. Experimental results have demonstrated the effectiveness of designed network structure and the superiority of proposed network over state-of-the-art methods. Specifically, reached 53.2% mIoU on the UAVid dataset and 77.6% mIoU on the UDD6 dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助普鲁卡因采纳,获得10
1秒前
orixero应助NXK采纳,获得10
1秒前
bjr完成签到 ,获得积分10
3秒前
研友_LwlAgn完成签到,获得积分10
7秒前
陈昊完成签到,获得积分10
15秒前
16秒前
tian发布了新的文献求助10
18秒前
21秒前
21秒前
龙舞星完成签到,获得积分10
22秒前
23秒前
王涉发布了新的文献求助10
25秒前
普鲁卡因发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
28秒前
柚子完成签到,获得积分10
32秒前
33秒前
马儿饿了要吃草完成签到,获得积分10
33秒前
35秒前
sudor123456完成签到,获得积分10
40秒前
NXK发布了新的文献求助10
40秒前
打打应助普鲁卡因采纳,获得10
43秒前
45秒前
lii完成签到,获得积分10
45秒前
jiaolulu发布了新的文献求助10
51秒前
个性惜蕊完成签到,获得积分10
51秒前
54秒前
轩辕书白完成签到,获得积分10
55秒前
qinzhikai完成签到,获得积分10
59秒前
天真的冬瓜完成签到,获得积分10
1分钟前
小溜溜完成签到 ,获得积分10
1分钟前
普鲁卡因发布了新的文献求助10
1分钟前
tian发布了新的文献求助10
1分钟前
桃花源的瓶起子完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
YYLLTX完成签到,获得积分10
1分钟前
畅快山兰完成签到 ,获得积分10
1分钟前
gaoxiaogao完成签到,获得积分10
1分钟前
舒适怀寒完成签到 ,获得积分10
1分钟前
shenglll完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022