UAVformer: A Composite Transformer Network for Urban Scene Segmentation of UAV Images

人工智能 计算机视觉 分割 计算机科学 编码器 图像分割 模式识别(心理学) 操作系统
作者
Yi Shi,Xi Liu,Junjie Li,Ling Chen
出处
期刊:Pattern Recognition [Elsevier]
卷期号:133: 109019-109019 被引量:46
标识
DOI:10.1016/j.patcog.2022.109019
摘要

Urban scenes segmentation based on UAV (Unmanned aerial vehicle) view is a fundamental task for the applications of smart city such as city planning, land use monitoring, traffic monitoring, and crowd estimation. While urban scenes in UAV image characteristic by large scale variation of objects size and complexity background, which posed challenges to urban scenes segmentation of UAV image. The feature extracting backbone of existing networks cannot extract complex features of UAV image effectively, which limits the performance of urban scenes segmentation. To design segmentation network capable of extracting features of large scale variation urban ground scenes, this study proposed a novel composite transformer network for urban scenes segmentation of UAV image. A composite backbone with aggregation windows multi-head self-attention transformer blocks is proposed to make the extracted features more representatives by adaptive multi-level features fusion, and the full utilisation of contextual information and local information. Position attention modules are inserted in each stage between encoder and decoder to further enhance the spatial attention of extracted feature maps. Finally, a V-shaped decoder which is capable of utilising multi-level features is designed to get accurately dense prediction. The accuracy of urban scenes segmentation could significantly be enhanced in this way and successfully segmented the large scale variation objects from UAV views. Extensive ablation experiments and comparative experiments for the proposed network have been conducted on the public available urban scenes segmentation datasets for UAV imagery. Experimental results have demonstrated the effectiveness of designed network structure and the superiority of proposed network over state-of-the-art methods. Specifically, reached 53.2% mIoU on the UAVid dataset and 77.6% mIoU on the UDD6 dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈立佳完成签到,获得积分10
刚刚
陈先生完成签到,获得积分10
3秒前
晨曦完成签到,获得积分10
5秒前
yanghaiyu完成签到,获得积分10
9秒前
科目三应助老默采纳,获得10
9秒前
10秒前
11秒前
贪玩飞柏发布了新的文献求助10
11秒前
12秒前
秦小荷完成签到,获得积分10
13秒前
利华尔完成签到,获得积分10
13秒前
14秒前
老默完成签到,获得积分10
14秒前
秦小荷发布了新的文献求助10
16秒前
小蘑菇应助无算浮白采纳,获得10
18秒前
打打应助尔尔采纳,获得10
19秒前
爱吃冻梨发布了新的文献求助10
21秒前
22秒前
23秒前
yi完成签到,获得积分20
24秒前
26秒前
SciGPT应助秦小荷采纳,获得10
27秒前
啦啦完成签到,获得积分10
28秒前
踏实机器猫完成签到 ,获得积分10
28秒前
充电宝应助孟相浩采纳,获得20
28秒前
华仔应助独特的绯采纳,获得10
28秒前
怕黑书翠发布了新的文献求助30
28秒前
顺利汉堡完成签到 ,获得积分10
29秒前
29秒前
萨芬完成签到,获得积分10
30秒前
30秒前
黑猫小苍完成签到,获得积分10
30秒前
31秒前
集力申完成签到,获得积分10
31秒前
你泽完成签到,获得积分20
31秒前
眼睛大盼兰完成签到 ,获得积分10
33秒前
33秒前
1111111发布了新的文献求助30
34秒前
漫步云端发布了新的文献求助10
35秒前
斯文败类应助怕黑书翠采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263