Microfluidics in vascular biology research: a critical review for engineers, biologists, and clinicians

微流控 芯片上器官 血管生成 纳米技术 计算机科学 系统生物学 生物 神经科学 计算生物学 干细胞 细胞生物学 材料科学 祖细胞
作者
Grigor Simitian,María Virumbrales-Muñoz,Cristina Sanchez-de-Diego,David J. Beebe,David Kosoff
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (19): 3618-3636
标识
DOI:10.1039/d2lc00352j
摘要

Neovascularization, the formation of new blood vessels, has received much research attention due to its implications for physiological processes and diseases. Most studies using traditional in vitro and in vivo platforms find challenges in recapitulating key cellular and mechanical cues of the neovascularization processes. Microfluidic in vitro models have been presented as an alternative to these limitations due to their capacity to leverage microscale physics to control cell organization and integrate biochemical and mechanical cues, such as shear stress, cell-cell interactions, or nutrient gradients, making them an ideal option for recapitulating organ physiology. Much has been written about the use of microfluidics in vascular biology models from an engineering perspective. However, a review introducing the different models, components and progress for new potential adopters of these technologies was absent in the literature. Therefore, this paper aims to approach the use of microfluidic technologies in vascular biology from a perspective of biological hallmarks to be studied and written for a wide audience ranging from clinicians to engineers. Here we review applications of microfluidics in vascular biology research, starting with design considerations and fabrication techniques. After that, we review the state of the art in recapitulating angiogenesis and vasculogenesis, according to the hallmarks recapitulated and complexity of the models. Finally, we discuss emerging research areas in neovascularization, such as drug discovery, and potential future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bruce完成签到,获得积分10
刚刚
科研通AI5应助南溪采纳,获得30
1秒前
无花果应助科研通管家采纳,获得10
2秒前
爆米花应助wch666采纳,获得10
2秒前
博弈春秋应助科研通管家采纳,获得10
2秒前
三里墩头应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
三里墩头应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
博弈春秋应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
julia应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得30
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得30
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
三里墩头应助科研通管家采纳,获得30
3秒前
ok完成签到 ,获得积分10
4秒前
4秒前
Cell完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
11完成签到,获得积分10
6秒前
呆萌的u完成签到,获得积分10
6秒前
articlechaser发布了新的文献求助10
6秒前
上官若男应助UTMOST采纳,获得10
7秒前
淡淡安筠完成签到,获得积分20
7秒前
Verbleu发布了新的文献求助10
7秒前
SciGPT应助合适春天采纳,获得10
8秒前
阿九发布了新的文献求助10
9秒前
9秒前
Tina发布了新的文献求助30
10秒前
Cherry完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557834
求助须知:如何正确求助?哪些是违规求助? 3132963
关于积分的说明 9399844
捐赠科研通 2832995
什么是DOI,文献DOI怎么找? 1557221
邀请新用户注册赠送积分活动 727141
科研通“疑难数据库(出版商)”最低求助积分说明 716197