计算机科学
可解释性
人工智能
背景(考古学)
可穿戴计算机
脑电图
线性判别分析
支持向量机
机器学习
钥匙(锁)
模式识别(心理学)
数据挖掘
心理学
古生物学
精神科
生物
嵌入式系统
计算机安全
作者
Christoph Anders,Bert Arnrich
标识
DOI:10.1016/j.compbiomed.2022.106088
摘要
Wearable multi-modal time-series classification applications outperform their best uni-modal counterparts and hold great promise. A modality that directly measures electrical correlates from the brain is electroencephalography. Due to varying noise sources, different key brain regions, key frequency bands, and signal characteristics like non-stationarity, techniques for data pre-processing and classification algorithms are task-dependent.
科研通智能强力驱动
Strongly Powered by AbleSci AI