Population Pharmacokinetic Modeling Combined With Machine Learning Approach Improved Tacrolimus Trough Concentration Prediction in Chinese Adult Liver Transplant Recipients

医学 红细胞压积 人口 他克莫司 药代动力学 槽水位 肝移植 槽浓度 钙调神经磷酸酶 治疗药物监测 非金属 相伴的 内科学 泌尿科 移植 环境卫生
作者
Ziran Li,Ruidong Li,Wanjie Niu,Xinyi Zheng,Zheng-Xin Wang,Mingkang Zhong,Xiaoyan Qiu
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
卷期号:63 (3): 314-325 被引量:5
标识
DOI:10.1002/jcph.2156
摘要

Abstract This study aimed to develop and evaluate a population pharmacokinetic (PPK) combined machine learning approach to predict tacrolimus trough concentrations for Chinese adult liver transplant recipients in the early posttransplant period. Tacrolimus trough concentrations were retrospectively collected from routine monitoring records of liver transplant recipients and divided into the training data set (1287 concentrations in 145 recipients) and the test data set (296 concentrations in 36 recipients). A PPK model was first established using NONMEM. Then a machine learning model of Xgboost was adapted to fit the estimated individual pharmacokinetic parameters obtained from the PPK model with Bayesian forecasting. The performance of the final PPK model and Xgboost model was compared in the test data set. In the final PPK model, tacrolimus daily dose, postoperative days, hematocrit, aspartate aminotransferase, and concomitant voriconazole, were identified to significantly influence the clearance. The postoperative days along with hematocrit significantly influence the volume of distribution. In the Xgboost model, the first 5 predictors for predicting the clearance were concomitant with voriconazole, sex, single nucleotide polymorphisms of CYP3A4*1G and CYP3A5*3 in recipients, and tacrolimus daily dose, for the volume of distribution were postoperative days, age, weight, total bilirubin and graft : recipient weight ratio. In the test data set, the Xgboost model showed the minimum median prediction error of tacrolimus concentrations, less than the PPK model with or without Bayesian forecasting. In conclusion, a PPK combined machine learning approach could improve the prediction of tacrolimus concentrations for Chinese adult liver transplant recipients in the early posttransplant period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑闷蛋完成签到,获得积分10
刚刚
橘止发布了新的文献求助20
刚刚
刚刚
刚刚
华仔应助我啊采纳,获得10
1秒前
友好的白柏完成签到 ,获得积分10
1秒前
威武的冷梅完成签到,获得积分10
1秒前
热情语堂发布了新的文献求助10
1秒前
JamesPei应助Almond采纳,获得10
1秒前
Alyssa发布了新的文献求助10
2秒前
Bosean发布了新的文献求助30
2秒前
王灿灿发布了新的文献求助10
2秒前
研友_VZG7GZ应助解觅荷采纳,获得10
2秒前
2秒前
why发布了新的文献求助10
3秒前
3秒前
wang发布了新的文献求助10
3秒前
化学完成签到,获得积分10
3秒前
海子发布了新的文献求助10
4秒前
共享精神应助凌寻冬采纳,获得10
4秒前
4秒前
li发布了新的文献求助10
4秒前
4秒前
肥肥完成签到,获得积分10
5秒前
纪元龙发布了新的文献求助50
5秒前
搜集达人应助BEST采纳,获得10
5秒前
Wendy含完成签到,获得积分10
6秒前
隐形曼青应助laura采纳,获得10
6秒前
lupeichun发布了新的文献求助10
7秒前
7秒前
化学发布了新的文献求助10
7秒前
大模型应助ASYA采纳,获得10
9秒前
9秒前
可爱的函函应助八九采纳,获得10
9秒前
10秒前
10秒前
赘婿应助Annie_Lee采纳,获得30
10秒前
Tantantan发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663