医学
红细胞压积
人口
他克莫司
药代动力学
槽水位
肝移植
槽浓度
钙调神经磷酸酶
治疗药物监测
非金属
相伴的
内科学
泌尿科
移植
环境卫生
作者
Ziran Li,Ruidong Li,Wanjie Niu,Xinyi Zheng,Zheng-Xin Wang,Mingkang Zhong,Xiaoyan Qiu
摘要
Abstract This study aimed to develop and evaluate a population pharmacokinetic (PPK) combined machine learning approach to predict tacrolimus trough concentrations for Chinese adult liver transplant recipients in the early posttransplant period. Tacrolimus trough concentrations were retrospectively collected from routine monitoring records of liver transplant recipients and divided into the training data set (1287 concentrations in 145 recipients) and the test data set (296 concentrations in 36 recipients). A PPK model was first established using NONMEM. Then a machine learning model of Xgboost was adapted to fit the estimated individual pharmacokinetic parameters obtained from the PPK model with Bayesian forecasting. The performance of the final PPK model and Xgboost model was compared in the test data set. In the final PPK model, tacrolimus daily dose, postoperative days, hematocrit, aspartate aminotransferase, and concomitant voriconazole, were identified to significantly influence the clearance. The postoperative days along with hematocrit significantly influence the volume of distribution. In the Xgboost model, the first 5 predictors for predicting the clearance were concomitant with voriconazole, sex, single nucleotide polymorphisms of CYP3A4*1G and CYP3A5*3 in recipients, and tacrolimus daily dose, for the volume of distribution were postoperative days, age, weight, total bilirubin and graft : recipient weight ratio. In the test data set, the Xgboost model showed the minimum median prediction error of tacrolimus concentrations, less than the PPK model with or without Bayesian forecasting. In conclusion, a PPK combined machine learning approach could improve the prediction of tacrolimus concentrations for Chinese adult liver transplant recipients in the early posttransplant period.
科研通智能强力驱动
Strongly Powered by AbleSci AI