Population Pharmacokinetic Modeling Combined With Machine Learning Approach Improved Tacrolimus Trough Concentration Prediction in Chinese Adult Liver Transplant Recipients

医学 红细胞压积 人口 他克莫司 药代动力学 槽水位 肝移植 槽浓度 钙调神经磷酸酶 治疗药物监测 非金属 相伴的 内科学 泌尿科 移植 环境卫生
作者
Ziran Li,Ruidong Li,Wanjie Niu,Xinyi Zheng,Zheng-Xin Wang,Mingkang Zhong,Xiaoyan Qiu
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
卷期号:63 (3): 314-325 被引量:10
标识
DOI:10.1002/jcph.2156
摘要

This study aimed to develop and evaluate a population pharmacokinetic (PPK) combined machine learning approach to predict tacrolimus trough concentrations for Chinese adult liver transplant recipients in the early posttransplant period. Tacrolimus trough concentrations were retrospectively collected from routine monitoring records of liver transplant recipients and divided into the training data set (1287 concentrations in 145 recipients) and the test data set (296 concentrations in 36 recipients). A PPK model was first established using NONMEM. Then a machine learning model of Xgboost was adapted to fit the estimated individual pharmacokinetic parameters obtained from the PPK model with Bayesian forecasting. The performance of the final PPK model and Xgboost model was compared in the test data set. In the final PPK model, tacrolimus daily dose, postoperative days, hematocrit, aspartate aminotransferase, and concomitant voriconazole, were identified to significantly influence the clearance. The postoperative days along with hematocrit significantly influence the volume of distribution. In the Xgboost model, the first 5 predictors for predicting the clearance were concomitant with voriconazole, sex, single nucleotide polymorphisms of CYP3A4*1G and CYP3A5*3 in recipients, and tacrolimus daily dose, for the volume of distribution were postoperative days, age, weight, total bilirubin and graft : recipient weight ratio. In the test data set, the Xgboost model showed the minimum median prediction error of tacrolimus concentrations, less than the PPK model with or without Bayesian forecasting. In conclusion, a PPK combined machine learning approach could improve the prediction of tacrolimus concentrations for Chinese adult liver transplant recipients in the early posttransplant period.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edinburgh完成签到,获得积分10
1秒前
温柔的安萱完成签到 ,获得积分10
1秒前
2秒前
猪猪hero应助来来采纳,获得10
2秒前
Robin完成签到,获得积分20
3秒前
lala发布了新的文献求助10
4秒前
4秒前
思源应助wanying采纳,获得10
4秒前
香蕉觅云应助优美紫槐采纳,获得10
4秒前
王某发布了新的文献求助10
4秒前
温柔的安萱关注了科研通微信公众号
5秒前
徐捷宁发布了新的文献求助10
6秒前
超级灵竹发布了新的文献求助10
6秒前
7秒前
8秒前
ding应助典雅的道罡采纳,获得10
8秒前
且慢应助追光者采纳,获得20
10秒前
陈卓完成签到 ,获得积分10
10秒前
科研通AI2S应助山西农大采纳,获得10
10秒前
11秒前
11秒前
12秒前
liangdayi357完成签到,获得积分20
13秒前
13秒前
Jason发布了新的文献求助10
14秒前
14秒前
15秒前
HHZ发布了新的文献求助10
16秒前
层层泡芙完成签到,获得积分10
16秒前
LANzzy发布了新的文献求助10
17秒前
zkyyy发布了新的文献求助10
18秒前
健壮夏山发布了新的文献求助10
20秒前
niu发布了新的文献求助10
20秒前
可爱的函函应助孙萌萌采纳,获得10
21秒前
21秒前
yin完成签到,获得积分10
21秒前
21秒前
orthojiang完成签到,获得积分10
23秒前
犹豫的若男完成签到 ,获得积分10
23秒前
li完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142