GM-TCNet: Gated Multi-scale Temporal Convolutional Network using Emotion Causality for Speech Emotion Recognition

计算机科学 因果关系(物理学) 人工智能 判别式 语音识别 组分(热力学) 领域(数学) 代表(政治) 特征学习 一般化 依赖关系(UML) 深度学习 自然语言处理
作者
Jia-Xin Ye,Xin-Cheng Wen,Xuan-Ze Wang,Yong Xu,Yan Luo,Chang-Li Wu,Li-Yan Chen,Kun-Hong Liu
出处
期刊:Speech Communication [Elsevier]
标识
DOI:10.1016/j.specom.2022.07.005
摘要

• . This paper proposes a novel network architecture called GM-TCNet for Speech Emotion Recognition based on the dilated causal convolutions and gating mechanism. • . A novel emotional causality representation learning component is designed to capture the dynamics of • emotion across time domain, and better model the speech emotions at the frame level. It also has a strong ability in building a reliable long-term sentimental dependency. To the best of our knowledge, this is the first attempt at applying the causality learning method to SER. • . GM-TCNet uses the skip connection among all Gated Convolution Blocks. It provides our network structure with a multi-scale temporal receptive field to improve its generalization ability. Moreover, a new dilated rate distribution of blocks is designed to obtain a larger receptive field, better fitting the SER applications. • . The proposed GM-TCNet approach gains state-of-the-art results in four widely studied datasets compared with other advanced approaches. In human-computer interaction, Speech Emotion Recognition (SER) plays an essential role in understanding the user's intent and improving the interactive experience. While similar sentimental speeches own diverse speaker characteristics but share common antecedents and consequences, an essential challenge for SER is how to produce robust and discriminative representations through causality between speech emotions. In this paper, we propose a Gated Multi-scale Temporal Convolutional Network (GM-TCNet) to construct a novel emotional causality repre- sentation learning component with a multi-scale receptive field. GM-TCNet deploys a novel emotional causality representation learning component to capture the dynamics of emotion across the time domain, constructed with dilated causal convolutions layer and gating mechanism. Besides, it utilizes skip connection fusing high-level fea- tures from different Gated Convolution Blocks (GCB) to capture abundant and subtle emotion changes in human speech. GM-TCNet first uses a single type of feature, Mel-Frequency Cepstral Coefficients (MFCC), as inputs and then passes them through the Gated Temporal Convolutional Module (GTCM) to generate the high-level fea- tures. Finally, the features are fed to the emotion classifier to accomplish the SER task. The experimental results show that our model maintains the highest performance in most cases, with +0.90% to +18.50% and +0.55% to +20.15% average relative improvement on the weighted average recall and unweighted average recall compared to state-of-the-art techniques. The source code is available at: https://github.com/Jiaxin-Ye/GM-TCNet for SER.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy.he应助小张采纳,获得10
刚刚
1秒前
JX完成签到,获得积分10
1秒前
2秒前
3秒前
7473发布了新的文献求助10
4秒前
4秒前
BowieHuang应助JX采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
maple完成签到,获得积分10
6秒前
JamesPei应助Aiuuu采纳,获得10
7秒前
xx发布了新的文献求助10
7秒前
SS完成签到,获得积分0
8秒前
BoBo完成签到 ,获得积分10
8秒前
希望天下0贩的0应助aaaaa采纳,获得10
8秒前
9秒前
LeeFY发布了新的文献求助10
9秒前
9秒前
宋佳完成签到 ,获得积分20
10秒前
机灵的丹寒完成签到 ,获得积分10
10秒前
11秒前
12秒前
咕噜肉完成签到,获得积分10
13秒前
上善若水完成签到 ,获得积分10
13秒前
15秒前
16秒前
王小雯发布了新的文献求助10
16秒前
lxl发布了新的文献求助10
16秒前
健忘的曼卉完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
wert发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
19秒前
20秒前
20秒前
852应助xx采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769914
求助须知:如何正确求助?哪些是违规求助? 5582213
关于积分的说明 15422997
捐赠科研通 4903501
什么是DOI,文献DOI怎么找? 2638224
邀请新用户注册赠送积分活动 1586106
关于科研通互助平台的介绍 1541280