GM-TCNet: Gated Multi-scale Temporal Convolutional Network using Emotion Causality for Speech Emotion Recognition

计算机科学 因果关系(物理学) 人工智能 判别式 语音识别 组分(热力学) 领域(数学) 代表(政治) 特征学习 一般化 依赖关系(UML) 深度学习 自然语言处理
作者
Jia-Xin Ye,Xin-Cheng Wen,Xuan-Ze Wang,Yong Xu,Yan Luo,Chang-Li Wu,Li-Yan Chen,Kun-Hong Liu
出处
期刊:Speech Communication [Elsevier BV]
标识
DOI:10.1016/j.specom.2022.07.005
摘要

• . This paper proposes a novel network architecture called GM-TCNet for Speech Emotion Recognition based on the dilated causal convolutions and gating mechanism. • . A novel emotional causality representation learning component is designed to capture the dynamics of • emotion across time domain, and better model the speech emotions at the frame level. It also has a strong ability in building a reliable long-term sentimental dependency. To the best of our knowledge, this is the first attempt at applying the causality learning method to SER. • . GM-TCNet uses the skip connection among all Gated Convolution Blocks. It provides our network structure with a multi-scale temporal receptive field to improve its generalization ability. Moreover, a new dilated rate distribution of blocks is designed to obtain a larger receptive field, better fitting the SER applications. • . The proposed GM-TCNet approach gains state-of-the-art results in four widely studied datasets compared with other advanced approaches. In human-computer interaction, Speech Emotion Recognition (SER) plays an essential role in understanding the user's intent and improving the interactive experience. While similar sentimental speeches own diverse speaker characteristics but share common antecedents and consequences, an essential challenge for SER is how to produce robust and discriminative representations through causality between speech emotions. In this paper, we propose a Gated Multi-scale Temporal Convolutional Network (GM-TCNet) to construct a novel emotional causality repre- sentation learning component with a multi-scale receptive field. GM-TCNet deploys a novel emotional causality representation learning component to capture the dynamics of emotion across the time domain, constructed with dilated causal convolutions layer and gating mechanism. Besides, it utilizes skip connection fusing high-level fea- tures from different Gated Convolution Blocks (GCB) to capture abundant and subtle emotion changes in human speech. GM-TCNet first uses a single type of feature, Mel-Frequency Cepstral Coefficients (MFCC), as inputs and then passes them through the Gated Temporal Convolutional Module (GTCM) to generate the high-level fea- tures. Finally, the features are fed to the emotion classifier to accomplish the SER task. The experimental results show that our model maintains the highest performance in most cases, with +0.90% to +18.50% and +0.55% to +20.15% average relative improvement on the weighted average recall and unweighted average recall compared to state-of-the-art techniques. The source code is available at: https://github.com/Jiaxin-Ye/GM-TCNet for SER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
一米阳光发布了新的文献求助10
6秒前
6秒前
Ying发布了新的文献求助10
7秒前
YG完成签到,获得积分10
7秒前
8秒前
myy完成签到,获得积分10
11秒前
无心的天真完成签到 ,获得积分10
11秒前
11秒前
PT177245发布了新的文献求助10
11秒前
12秒前
彭于晏应助往返采纳,获得10
15秒前
pcx发布了新的文献求助10
16秒前
17秒前
温暖白柏完成签到,获得积分10
17秒前
17秒前
聪明无敌小腚宝完成签到,获得积分10
18秒前
19秒前
21秒前
23秒前
Irene发布了新的文献求助30
24秒前
李爱国应助皮皮卡采纳,获得10
24秒前
罗氏集团发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
发阿发完成签到,获得积分10
25秒前
27秒前
海风发布了新的文献求助10
27秒前
迎风发布了新的文献求助10
28秒前
往返发布了新的文献求助10
28秒前
慧喆完成签到 ,获得积分10
28秒前
tanrui发布了新的文献求助10
30秒前
30秒前
无限的妙菡完成签到 ,获得积分10
30秒前
郑同学完成签到,获得积分10
30秒前
天边外发布了新的文献求助10
31秒前
望志青年应助柳娅茹采纳,获得10
31秒前
皮皮卡发布了新的文献求助10
35秒前
从容的鲜花完成签到,获得积分20
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075