GM-TCNet: Gated Multi-scale Temporal Convolutional Network using Emotion Causality for Speech Emotion Recognition

计算机科学 因果关系(物理学) 人工智能 判别式 语音识别 组分(热力学) 领域(数学) 代表(政治) 特征学习 一般化 依赖关系(UML) 深度学习 自然语言处理
作者
Jia-Xin Ye,Xin-Cheng Wen,Xuan-Ze Wang,Yong Xu,Yan Luo,Chang-Li Wu,Li-Yan Chen,Kun-Hong Liu
出处
期刊:Speech Communication [Elsevier]
标识
DOI:10.1016/j.specom.2022.07.005
摘要

• . This paper proposes a novel network architecture called GM-TCNet for Speech Emotion Recognition based on the dilated causal convolutions and gating mechanism. • . A novel emotional causality representation learning component is designed to capture the dynamics of • emotion across time domain, and better model the speech emotions at the frame level. It also has a strong ability in building a reliable long-term sentimental dependency. To the best of our knowledge, this is the first attempt at applying the causality learning method to SER. • . GM-TCNet uses the skip connection among all Gated Convolution Blocks. It provides our network structure with a multi-scale temporal receptive field to improve its generalization ability. Moreover, a new dilated rate distribution of blocks is designed to obtain a larger receptive field, better fitting the SER applications. • . The proposed GM-TCNet approach gains state-of-the-art results in four widely studied datasets compared with other advanced approaches. In human-computer interaction, Speech Emotion Recognition (SER) plays an essential role in understanding the user's intent and improving the interactive experience. While similar sentimental speeches own diverse speaker characteristics but share common antecedents and consequences, an essential challenge for SER is how to produce robust and discriminative representations through causality between speech emotions. In this paper, we propose a Gated Multi-scale Temporal Convolutional Network (GM-TCNet) to construct a novel emotional causality repre- sentation learning component with a multi-scale receptive field. GM-TCNet deploys a novel emotional causality representation learning component to capture the dynamics of emotion across the time domain, constructed with dilated causal convolutions layer and gating mechanism. Besides, it utilizes skip connection fusing high-level fea- tures from different Gated Convolution Blocks (GCB) to capture abundant and subtle emotion changes in human speech. GM-TCNet first uses a single type of feature, Mel-Frequency Cepstral Coefficients (MFCC), as inputs and then passes them through the Gated Temporal Convolutional Module (GTCM) to generate the high-level fea- tures. Finally, the features are fed to the emotion classifier to accomplish the SER task. The experimental results show that our model maintains the highest performance in most cases, with +0.90% to +18.50% and +0.55% to +20.15% average relative improvement on the weighted average recall and unweighted average recall compared to state-of-the-art techniques. The source code is available at: https://github.com/Jiaxin-Ye/GM-TCNet for SER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿尼发布了新的文献求助20
1秒前
1秒前
鲤鱼奇异果完成签到,获得积分10
1秒前
互助遵法尚德应助gaoxc929采纳,获得10
1秒前
2秒前
huanhuan发布了新的文献求助10
2秒前
LanDepp发布了新的文献求助10
3秒前
真实的半凡完成签到,获得积分10
3秒前
4秒前
你好纠结伦完成签到,获得积分10
4秒前
文弱书生发布了新的文献求助150
4秒前
l玖发布了新的文献求助30
4秒前
小马甲应助swq采纳,获得10
6秒前
6秒前
葡萄成熟发布了新的文献求助30
6秒前
6秒前
罗小黑完成签到 ,获得积分10
6秒前
yqqqqq发布了新的文献求助10
6秒前
ddffgz完成签到,获得积分20
6秒前
简单的银耳汤完成签到,获得积分10
6秒前
mingkle应助restudy68采纳,获得10
6秒前
7秒前
桐桐应助坚强的严青采纳,获得10
7秒前
7秒前
兜兜应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得20
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得20
8秒前
suodeheng完成签到,获得积分10
8秒前
星辰大海应助科研通管家采纳,获得30
8秒前
吉祥应助科研通管家采纳,获得30
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得20
8秒前
坚强亦丝应助科研通管家采纳,获得10
8秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760