A deep learning-based method for mapping alpine intermittent rivers and ephemeral streams of the Tibetan Plateau from Sentinel-1 time series and DEMs

高原(数学) 短暂键 遥感 溪流 数字高程模型 系列(地层学) 流域 地质学 地表径流 仰角(弹道) 水文学(农业) 环境科学 计算机科学 地理 地图学 古生物学 几何学 生物 数学 数学分析 计算机网络 生态学 岩土工程 算法
作者
Junyuan Fei,Jintao Liu,Linghong Ke,Wen Wang,Pengfei Wu,Yuyan Zhou
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113271-113271 被引量:14
标识
DOI:10.1016/j.rse.2022.113271
摘要

Flow regime changes of Intermittent Rivers and Ephemeral Streams (IRES) can serve as an indicator under global warming, yet the distribution of IRES is rarely extracted at the alpine catchment scale due to their narrow water surface and the heavy cloud contamination on the Tibetan Plateau. Here, a new two-stage method using the deep learning model is proposed for M apping alpine I RES from S entinel-1 time series and D igital elevation models ( MISD ). Firstly, the median images of cross-orbits double-periods (i.e., the flowing period and the drying-up period of alpine IRES) Sentinel-1 time series are input to the deep learning model to synoptically extract alpine IRES in mixed pixels under the heavy cloud contamination. Secondly, the deep learning-based output is corrected by the critical drainage accumulation derived from digital elevation models to remove the disturbance of the non-channelized overland flow on upland. The MISD method was first applied to an alpine catchment, namely the Duodigou Catchment, and then was assessed in the whole Lhasa River Basin. The results showed that the application of cross-orbits double-periods Sentinel-1 time series in the deep learning model is helpful in handling the mixed-pixel problem. And the critical drainage accumulation correction further improves the deep learning-based output with F2 (the metric that measures precision and recall of model) and the median Euclidean distance error of 0.72 and 64.0 m, respectively. Subsequently, the newly proposed MISD method outperforms other river extraction methods in alpine IRES mapping with higher F2 (increased by 0.5) and lower median Euclidean distance error (decreased by 145.7 m). Moreover, the MISD method is characterized by the capability for detecting narrower or lower flow IRES with river width > 1.7 m and discharge >2 L/s, which is significantly ignored in the current global water products. Furthermore, the MISD method successfully recognizes most of the channelized IRES from permanent rivers in the whole Lhasa River Basin through essential training. Therefore, the MISD method is a powerful tool for monitoring the changes of IRES induced by the glacier retreats or the permafrost degradation, etc., on the warming Tibetan Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哲别发布了新的文献求助10
2秒前
科目三应助lili采纳,获得10
2秒前
赘婿应助蛋蛋采纳,获得10
2秒前
nightmoonsun完成签到,获得积分10
2秒前
科研通AI5应助李君然采纳,获得10
3秒前
大个应助SIDEsss采纳,获得10
3秒前
drjim发布了新的文献求助10
3秒前
3秒前
吴圳发布了新的文献求助10
3秒前
飞翔的霸天哥应助WLWLW采纳,获得30
4秒前
Maestro_S应助jyyg采纳,获得10
4秒前
不愿透露姓名科研人完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助joruruo采纳,获得10
4秒前
nancyshine完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
liuqizong123完成签到,获得积分10
6秒前
东晓完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
科研通AI5应助kk采纳,获得10
8秒前
叶子发布了新的文献求助10
8秒前
xubee发布了新的文献求助10
8秒前
随心发布了新的文献求助10
8秒前
xiaobai完成签到,获得积分10
8秒前
9秒前
深情安青应助友好的半仙采纳,获得10
9秒前
NexusExplorer应助lss采纳,获得10
10秒前
10秒前
10秒前
额度发布了新的文献求助10
11秒前
研友_89jWGL发布了新的文献求助10
11秒前
11秒前
小姜醒醒完成签到,获得积分10
11秒前
畅快山兰发布了新的文献求助10
11秒前
清脆半邪发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426