A deep learning-based method for mapping alpine intermittent rivers and ephemeral streams of the Tibetan Plateau from Sentinel-1 time series and DEMs

高原(数学) 短暂键 遥感 溪流 数字高程模型 系列(地层学) 流域 地质学 地表径流 仰角(弹道) 水文学(农业) 环境科学 计算机科学 地理 地图学 古生物学 几何学 生态学 生物 算法 岩土工程 数学 计算机网络 数学分析
作者
Junyuan Fei,Jintao Liu,Linghong Ke,Wen Wang,Pengfei Wu,Yuyan Zhou
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113271-113271 被引量:14
标识
DOI:10.1016/j.rse.2022.113271
摘要

Flow regime changes of Intermittent Rivers and Ephemeral Streams (IRES) can serve as an indicator under global warming, yet the distribution of IRES is rarely extracted at the alpine catchment scale due to their narrow water surface and the heavy cloud contamination on the Tibetan Plateau. Here, a new two-stage method using the deep learning model is proposed for M apping alpine I RES from S entinel-1 time series and D igital elevation models ( MISD ). Firstly, the median images of cross-orbits double-periods (i.e., the flowing period and the drying-up period of alpine IRES) Sentinel-1 time series are input to the deep learning model to synoptically extract alpine IRES in mixed pixels under the heavy cloud contamination. Secondly, the deep learning-based output is corrected by the critical drainage accumulation derived from digital elevation models to remove the disturbance of the non-channelized overland flow on upland. The MISD method was first applied to an alpine catchment, namely the Duodigou Catchment, and then was assessed in the whole Lhasa River Basin. The results showed that the application of cross-orbits double-periods Sentinel-1 time series in the deep learning model is helpful in handling the mixed-pixel problem. And the critical drainage accumulation correction further improves the deep learning-based output with F2 (the metric that measures precision and recall of model) and the median Euclidean distance error of 0.72 and 64.0 m, respectively. Subsequently, the newly proposed MISD method outperforms other river extraction methods in alpine IRES mapping with higher F2 (increased by 0.5) and lower median Euclidean distance error (decreased by 145.7 m). Moreover, the MISD method is characterized by the capability for detecting narrower or lower flow IRES with river width > 1.7 m and discharge >2 L/s, which is significantly ignored in the current global water products. Furthermore, the MISD method successfully recognizes most of the channelized IRES from permanent rivers in the whole Lhasa River Basin through essential training. Therefore, the MISD method is a powerful tool for monitoring the changes of IRES induced by the glacier retreats or the permafrost degradation, etc., on the warming Tibetan Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mylpp发布了新的文献求助10
刚刚
欢喜芷珊发布了新的文献求助10
刚刚
呼叫外星人完成签到,获得积分10
刚刚
sumugeng发布了新的文献求助10
1秒前
淡淡的向雁完成签到,获得积分10
2秒前
lili发布了新的文献求助10
2秒前
Tu完成签到 ,获得积分10
2秒前
小小发布了新的文献求助10
2秒前
桶治世界完成签到,获得积分10
2秒前
qqq完成签到 ,获得积分10
2秒前
深情安青应助借一颗糖采纳,获得10
3秒前
4秒前
4秒前
搜集达人应助满意冰露采纳,获得10
5秒前
酷波er应助自然乘云采纳,获得10
5秒前
6秒前
cocolu应助颜林林采纳,获得10
6秒前
QDU应助iiiorange采纳,获得20
7秒前
8秒前
8秒前
xxl发布了新的文献求助10
8秒前
Rainy发布了新的文献求助20
9秒前
9秒前
Lucas应助陶醉的夜绿采纳,获得10
10秒前
slyhhk发布了新的文献求助30
10秒前
欢喜芷珊完成签到,获得积分10
11秒前
GentleFade完成签到,获得积分10
11秒前
liuxiuyue发布了新的文献求助10
12秒前
科研副本完成签到,获得积分10
12秒前
有梦想的咸鱼完成签到,获得积分10
13秒前
swing完成签到 ,获得积分10
13秒前
Celine发布了新的文献求助10
13秒前
YANGJIE6发布了新的文献求助10
14秒前
UNIQUE完成签到,获得积分10
15秒前
所所应助GentleFade采纳,获得10
15秒前
维尼完成签到,获得积分10
17秒前
lwroche发布了新的文献求助10
17秒前
18秒前
满意冰露完成签到,获得积分10
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574