Convolutional neural network for screening of obstructive sleep apnea using snoring sounds

金标准(测试) 阻塞性睡眠呼吸暂停 睡眠呼吸暂停 呼吸不足 医学 多导睡眠图 卷积神经网络 人口 计算机科学 呼吸暂停 人工智能 内科学 环境卫生
作者
Ruixue Li,Wenjun Li,Keqiang Yue,Yilin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 104966-104966 被引量:13
标识
DOI:10.1016/j.bspc.2023.104966
摘要

Screening and assessment for obstructive sleep apnea hypopnea syndrome (OSAHS) has attracted growing attention to improve the life of patients with sleep apnea. The gold standard for diagnosing OSAHS is an overnight polysomnography (PSG) in a dedicated sleep laboratory. Yet, the PSG test is professional, expensive and unsuitable for mass screening of the population. OSAH affects about 10 % of population in the world, and there are about 80 % suffers remaining undiagnosed. The automatic and cheap OSAHS patients screening methods are urgently needed. As a major sign of undiagnosed OSAHS, snoring has been used for diagnosis of OSAHS. An automated snore detection method would allow a faster diagnosis and more patients to be analyzed. In this paper, we build a database including more than 80 thousand of snoring sound episodes from 124 subjects. These sounds are recorded by non-contact microphone in the subject's private room, and labeled by trained sleep clinicians. And then the visibility graph method is modified as a novel framework for encoding these snoring time series into images to fully take advantage of two-dimension convolutional neural networks (CNN) in computer vision tasks. At last, a CNN model based on visibility graph method (VG) is applied to automatically extract features and recognize severity of OSAHS based on these snoring sounds. The experimental results show that our approach achieves an accuracy of 92.5 %, sensitivity of 93.9 %, and specificity of 91.2 % for OSAHS recognition. Our research provides an alternative method for rapid and massive screening and diagnosis of OSAHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助杨柳9203采纳,获得10
2秒前
陈陈陈1发布了新的文献求助30
2秒前
2秒前
2秒前
上官若男应助顺心的花生采纳,获得10
2秒前
3秒前
科研通AI6应助大道采纳,获得10
4秒前
zzzz发布了新的文献求助10
4秒前
shellwey完成签到,获得积分20
4秒前
七原完成签到,获得积分10
5秒前
6秒前
黄臻发布了新的文献求助10
6秒前
ww11完成签到 ,获得积分20
7秒前
三金发布了新的文献求助10
7秒前
7秒前
9秒前
zzzz完成签到,获得积分10
9秒前
七原发布了新的文献求助10
9秒前
唐僧洗发用飘柔完成签到,获得积分10
10秒前
10秒前
冷咖啡离开了杯垫完成签到,获得积分10
11秒前
11秒前
充电宝应助bai采纳,获得10
11秒前
JamesPei应助阿肖呀采纳,获得10
11秒前
13秒前
13秒前
14秒前
小二郎应助Hmzh采纳,获得10
14秒前
14秒前
14秒前
shinn发布了新的文献求助10
14秒前
jzy发布了新的文献求助30
15秒前
16秒前
雅3165完成签到 ,获得积分20
16秒前
oneshamok发布了新的文献求助30
16秒前
冷艳的紫发布了新的文献求助10
17秒前
脑洞疼应助红莲墨生采纳,获得10
17秒前
WDD完成签到,获得积分10
19秒前
华仔应助黄祖川采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578694
求助须知:如何正确求助?哪些是违规求助? 4663478
关于积分的说明 14746840
捐赠科研通 4604380
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496508
关于科研通互助平台的介绍 1465823