Convolutional neural network for screening of obstructive sleep apnea using snoring sounds

金标准(测试) 阻塞性睡眠呼吸暂停 睡眠呼吸暂停 呼吸不足 医学 多导睡眠图 卷积神经网络 人口 计算机科学 呼吸暂停 人工智能 内科学 环境卫生
作者
Ruixue Li,Wenjun Li,Keqiang Yue,Yilin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 104966-104966 被引量:2
标识
DOI:10.1016/j.bspc.2023.104966
摘要

Screening and assessment for obstructive sleep apnea hypopnea syndrome (OSAHS) has attracted growing attention to improve the life of patients with sleep apnea. The gold standard for diagnosing OSAHS is an overnight polysomnography (PSG) in a dedicated sleep laboratory. Yet, the PSG test is professional, expensive and unsuitable for mass screening of the population. OSAH affects about 10 % of population in the world, and there are about 80 % suffers remaining undiagnosed. The automatic and cheap OSAHS patients screening methods are urgently needed. As a major sign of undiagnosed OSAHS, snoring has been used for diagnosis of OSAHS. An automated snore detection method would allow a faster diagnosis and more patients to be analyzed. In this paper, we build a database including more than 80 thousand of snoring sound episodes from 124 subjects. These sounds are recorded by non-contact microphone in the subject's private room, and labeled by trained sleep clinicians. And then the visibility graph method is modified as a novel framework for encoding these snoring time series into images to fully take advantage of two-dimension convolutional neural networks (CNN) in computer vision tasks. At last, a CNN model based on visibility graph method (VG) is applied to automatically extract features and recognize severity of OSAHS based on these snoring sounds. The experimental results show that our approach achieves an accuracy of 92.5 %, sensitivity of 93.9 %, and specificity of 91.2 % for OSAHS recognition. Our research provides an alternative method for rapid and massive screening and diagnosis of OSAHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥猫完成签到,获得积分10
1秒前
Aixia发布了新的文献求助10
2秒前
小唐尼完成签到,获得积分10
2秒前
6秒前
皮老师发布了新的文献求助10
6秒前
幸福大白完成签到,获得积分10
7秒前
8秒前
Cml发布了新的文献求助30
9秒前
河大谢广坤完成签到,获得积分10
9秒前
10秒前
11秒前
111111发布了新的文献求助10
11秒前
14秒前
陌予发布了新的文献求助10
15秒前
16秒前
缓慢的开山完成签到 ,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
ash完成签到,获得积分20
23秒前
23秒前
24秒前
英俊的铭应助月月采纳,获得10
27秒前
ash发布了新的文献求助100
27秒前
周也发布了新的文献求助10
27秒前
文献菜鸟完成签到 ,获得积分10
28秒前
淅淅12345完成签到,获得积分20
28秒前
小二郎应助zhan采纳,获得10
28秒前
31秒前
31秒前
osmanthus完成签到,获得积分10
31秒前
feng1235完成签到,获得积分10
33秒前
拓木幸子完成签到,获得积分10
34秒前
热心市民小红花应助陈昊采纳,获得10
34秒前
35秒前
lcr发布了新的文献求助10
36秒前
Ginkgo完成签到 ,获得积分10
37秒前
安静海露完成签到,获得积分10
37秒前
38秒前
zhan完成签到,获得积分10
39秒前
顾矜应助anna采纳,获得10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073