已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional neural network for screening of obstructive sleep apnea using snoring sounds

金标准(测试) 阻塞性睡眠呼吸暂停 睡眠呼吸暂停 呼吸不足 医学 多导睡眠图 卷积神经网络 人口 计算机科学 呼吸暂停 人工智能 内科学 环境卫生
作者
Ruixue Li,Wenjun Li,Keqiang Yue,Yilin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 104966-104966 被引量:2
标识
DOI:10.1016/j.bspc.2023.104966
摘要

Screening and assessment for obstructive sleep apnea hypopnea syndrome (OSAHS) has attracted growing attention to improve the life of patients with sleep apnea. The gold standard for diagnosing OSAHS is an overnight polysomnography (PSG) in a dedicated sleep laboratory. Yet, the PSG test is professional, expensive and unsuitable for mass screening of the population. OSAH affects about 10 % of population in the world, and there are about 80 % suffers remaining undiagnosed. The automatic and cheap OSAHS patients screening methods are urgently needed. As a major sign of undiagnosed OSAHS, snoring has been used for diagnosis of OSAHS. An automated snore detection method would allow a faster diagnosis and more patients to be analyzed. In this paper, we build a database including more than 80 thousand of snoring sound episodes from 124 subjects. These sounds are recorded by non-contact microphone in the subject's private room, and labeled by trained sleep clinicians. And then the visibility graph method is modified as a novel framework for encoding these snoring time series into images to fully take advantage of two-dimension convolutional neural networks (CNN) in computer vision tasks. At last, a CNN model based on visibility graph method (VG) is applied to automatically extract features and recognize severity of OSAHS based on these snoring sounds. The experimental results show that our approach achieves an accuracy of 92.5 %, sensitivity of 93.9 %, and specificity of 91.2 % for OSAHS recognition. Our research provides an alternative method for rapid and massive screening and diagnosis of OSAHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI40应助微笑问寒采纳,获得10
刚刚
TT完成签到,获得积分10
2秒前
xiaolu发布了新的文献求助10
3秒前
璟焱完成签到 ,获得积分10
3秒前
我人儿倪完成签到 ,获得积分10
4秒前
外向的斑马完成签到 ,获得积分10
5秒前
情怀应助栀子采纳,获得10
7秒前
外向春天完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
打打应助清爽的音响采纳,获得10
13秒前
13秒前
wonder发布了新的文献求助10
13秒前
13秒前
xiaolu发布了新的文献求助10
17秒前
19秒前
涂江渝发布了新的文献求助10
20秒前
xiaolu发布了新的文献求助10
22秒前
23秒前
yy完成签到 ,获得积分10
24秒前
牛马哥完成签到,获得积分10
25秒前
skyelee应助jcs采纳,获得10
26秒前
顺利的冰旋完成签到 ,获得积分10
27秒前
29秒前
追寻绮玉完成签到,获得积分10
30秒前
小仙虎殿下完成签到 ,获得积分10
31秒前
涂江渝完成签到,获得积分10
31秒前
32秒前
32秒前
will完成签到 ,获得积分10
33秒前
qqqqq99发布了新的文献求助10
35秒前
xiaolu发布了新的文献求助10
35秒前
36秒前
小慕斯应助吹吹蒲公英采纳,获得10
36秒前
Pt完成签到,获得积分10
36秒前
LZY发布了新的文献求助10
36秒前
36秒前
略lue发布了新的文献求助30
40秒前
46秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471274
求助须知:如何正确求助?哪些是违规求助? 3064220
关于积分的说明 9087832
捐赠科研通 2754974
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423