已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional neural network for screening of obstructive sleep apnea using snoring sounds

金标准(测试) 阻塞性睡眠呼吸暂停 睡眠呼吸暂停 呼吸不足 医学 多导睡眠图 卷积神经网络 人口 计算机科学 呼吸暂停 人工智能 内科学 环境卫生
作者
Ruixue Li,Wenjun Li,Keqiang Yue,Yilin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 104966-104966 被引量:13
标识
DOI:10.1016/j.bspc.2023.104966
摘要

Screening and assessment for obstructive sleep apnea hypopnea syndrome (OSAHS) has attracted growing attention to improve the life of patients with sleep apnea. The gold standard for diagnosing OSAHS is an overnight polysomnography (PSG) in a dedicated sleep laboratory. Yet, the PSG test is professional, expensive and unsuitable for mass screening of the population. OSAH affects about 10 % of population in the world, and there are about 80 % suffers remaining undiagnosed. The automatic and cheap OSAHS patients screening methods are urgently needed. As a major sign of undiagnosed OSAHS, snoring has been used for diagnosis of OSAHS. An automated snore detection method would allow a faster diagnosis and more patients to be analyzed. In this paper, we build a database including more than 80 thousand of snoring sound episodes from 124 subjects. These sounds are recorded by non-contact microphone in the subject's private room, and labeled by trained sleep clinicians. And then the visibility graph method is modified as a novel framework for encoding these snoring time series into images to fully take advantage of two-dimension convolutional neural networks (CNN) in computer vision tasks. At last, a CNN model based on visibility graph method (VG) is applied to automatically extract features and recognize severity of OSAHS based on these snoring sounds. The experimental results show that our approach achieves an accuracy of 92.5 %, sensitivity of 93.9 %, and specificity of 91.2 % for OSAHS recognition. Our research provides an alternative method for rapid and massive screening and diagnosis of OSAHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张俊琪完成签到,获得积分10
6秒前
12秒前
13秒前
ze发布了新的文献求助10
14秒前
Garnieta完成签到,获得积分10
15秒前
张楠发布了新的文献求助10
16秒前
16秒前
貔貅发布了新的文献求助10
17秒前
俭朴蜜蜂完成签到 ,获得积分10
18秒前
18秒前
完美世界应助戏谑采纳,获得10
19秒前
19秒前
852应助硫琉流采纳,获得10
20秒前
21秒前
浮生发布了新的文献求助10
21秒前
郑dh完成签到,获得积分10
22秒前
研友_LX7Qg8发布了新的文献求助20
23秒前
现实的一寡完成签到,获得积分10
25秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得30
29秒前
浮游应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
科研通AI6应助现实的一寡采纳,获得10
29秒前
30秒前
yy完成签到 ,获得积分10
30秒前
杰尼龟的鱼完成签到 ,获得积分10
35秒前
萍萍完成签到 ,获得积分10
35秒前
沉默的谷丝完成签到,获得积分10
37秒前
38秒前
41秒前
wang发布了新的文献求助10
42秒前
Leo发布了新的文献求助10
45秒前
45秒前
47秒前
bjyxszd完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463082
求助须知:如何正确求助?哪些是违规求助? 4567845
关于积分的说明 14311869
捐赠科研通 4493691
什么是DOI,文献DOI怎么找? 2461823
邀请新用户注册赠送积分活动 1450866
关于科研通互助平台的介绍 1426021