Idesf: An Edge Computing-Oriented Filter Pruning Method Based on Indirect and Direct Evaluation Space Fusion

修剪 GSM演进的增强数据速率 空格(标点符号) 滤波器(信号处理) 计算机科学 融合 算法 人工智能 计算机视觉 园艺 语言学 哲学 生物 操作系统
作者
Zhiwen Chen,Ailiangfei Chen,Xiaodan Tang,Haobin Ke,Zhaohui Jiang
标识
DOI:10.2139/ssrn.4423326
摘要

At present, edge computing has attracted widespread attention because of its potential to overcome the problems of high latency and high network occupancy in cloud computing, but it faces the constraints of limited storage space and computing resources in the actual process. To this end, this paper proposed an edge computing-oriented filter pruning method based on indirect and direct evaluation space fusion (IDESF) to make the YOLOv5 network lightweight. IDESF has two advantages over existing methods: (1) Novel evaluation strategy. IDESF compresses CNN models by pruning filters with redundancy in the constructed importance evaluation fusion space, rather than those with “direct-based less” or “indirect-based less” importance. (2) Stronger interpretability of the filter pruning process. The directed graph constructed based on the filters in the fusion space makes the distribution and closeness relationship between the filters visible, and the in-degree of nodes (i.e., filters) in its adjacency matrix enables the redundancy of the filter to be quantified. Therefore, the filter pruning process in our method has better interpretability and visualization. IDESF and SOTAs (i.e., Yolov5s-ghostnet, EagleEye, FPGM, SFP) are evaluated on the VOC2007-2012 dataset and the private MM-dataset. Results show that, when the pruning rate is 0.5, compared with the SOTAs, IDESF reduces the most parameters and the required storage resources, as well more than 40% FLOPs on the YOLOv5 with the highest accuracy on both datasets. Notably, IDESF even improves the accuracy by 8.1% than that of the baseline on MM-dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
请叫我风吹麦浪应助Artemis采纳,获得10
1秒前
绝对快乐发布了新的文献求助10
1秒前
无限的绮晴完成签到,获得积分10
1秒前
1秒前
木槿发布了新的文献求助10
1秒前
Owen应助x9816采纳,获得10
3秒前
ECMWF发布了新的文献求助10
3秒前
chaozihao完成签到,获得积分10
3秒前
bbdx发布了新的文献求助10
3秒前
谨慎青亦发布了新的文献求助10
3秒前
李明完成签到,获得积分10
4秒前
4秒前
时尚的穆发布了新的文献求助10
4秒前
5秒前
失眠的诗蕊完成签到,获得积分0
5秒前
嗯哼完成签到,获得积分10
5秒前
AK发布了新的文献求助10
6秒前
wangzhaorui完成签到,获得积分10
6秒前
顺利的飞荷完成签到,获得积分0
6秒前
7秒前
sssss完成签到 ,获得积分10
7秒前
隐形曼青应助犹豫书瑶采纳,获得10
8秒前
蜡笔小鑫发布了新的文献求助10
8秒前
8秒前
wrx完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
Ava应助WDD采纳,获得10
12秒前
12秒前
研友_Z33EGZ发布了新的文献求助10
13秒前
Jenny完成签到,获得积分10
14秒前
阿文发布了新的文献求助10
14秒前
峰峰峰发布了新的文献求助10
14秒前
糊涂的凡完成签到,获得积分10
15秒前
肥瘦肉肉完成签到 ,获得积分20
15秒前
15秒前
谢春花完成签到,获得积分10
16秒前
Dr_Pan完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461924
求助须知:如何正确求助?哪些是违规求助? 3055592
关于积分的说明 9048604
捐赠科研通 2745261
什么是DOI,文献DOI怎么找? 1506125
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695539