差别隐私
计算机科学
期望最大化算法
构造(python库)
混合模型
高斯分布
多元正态分布
数据挖掘
互联网
差速器(机械装置)
算法
最大化
贝叶斯概率
人工智能
多元统计
机器学习
数学优化
最大似然
数学
统计
物理
量子力学
万维网
工程类
程序设计语言
航空航天工程
标识
DOI:10.1038/s41598-023-33044-y
摘要
Multi-center heterogeneous data are a hot topic in federated learning. The data of clients and centers do not follow a normal distribution, posing significant challenges to learning. Based on the assumption that the client data have a multivariate skewed normal distribution, we improve the DP-Fed-mv-PPCA model. We use a Bayesian framework to construct prior distributions of local parameters and use expectation maximization and pseudo-Newton algorithms to obtain robust parameter estimates. Then, the clipping algorithm and differential privacy algorithm are used to solve the problem in which the model parameters do not have a display solution and achieve privacy guarantee. Furthermore, we verified the effectiveness of our model using synthetic and actual data from the Internet of vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI