A mass defect filtering combined background subtraction strategy for rapid screening and identification of metabolites in rat plasma after oral administration of Yindan Xinnaotong soft capsule

化学 代谢物 色谱法 四极飞行时间 阿司匹林 药理学 胶囊 串联质谱法 三级四极质谱仪 质谱法 选择性反应监测 生物化学 医学 植物 生物
作者
An-Xian Huang,Junming Li,Jing Wang,Ling Chen,Zihan Zhou,Ping Li,Wen Gao
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:231: 115400-115400 被引量:2
标识
DOI:10.1016/j.jpba.2023.115400
摘要

The absorbed prototypes and metabolites of traditional Chinese medicines (TCMs) serves an important part in pharmacological action and clinical effects. However, the comprehensive characterization of which is facing actual or possible rigorous challenges due to the lack of data mining methods and the complexity of metabolite samples. Yindan Xinnaotong soft capsule (YDXNT), a typical traditional Chinese medicine prescription consisting of extracts from 8 herbal medicines, is widely used for the treatment of angina pectoris and ischemic stroke in the clinic. This study established a systematic data mining strategy based on ultra-high performance liquid chromatography tandem quadrupole-time-of-fight mass spectrometry (UHPLC-Q-TOF MS) for comprehensive metabolite profiling of YDXNT in rat plasma after oral administration. The multi-level feature ion filtration strategy was primarily conducted through the full scan MS data of plasma samples. All potential metabolites were rapidly fileted out from the endogenous background interference based on the background subtract and the chemical type specifically mass defect filter (MDF) windows including flavonoids, ginkgolides, phenolic acids, saponins, and tanshinones. As the MDF windows of certain types were overlapped, the screened-out potential metabolites were deeply characterized and identified according to their retention times (RT), integrating neutral loss filtering (NLF), diagnostic fragment ions filtering (DFIF), and further confirmed by reference standards. Thus, a total of 122 compounds, consisting of 29 prototype components (16 confirmed with reference standards) and 93 metabolites had been identified. This study provides a rapid and robust metabolite profiling method for researching complicated traditional Chinese medicine prescriptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃蛋饼的zach完成签到 ,获得积分10
1秒前
搜集达人应助寻水的鱼采纳,获得10
1秒前
GUGU完成签到,获得积分20
1秒前
田様应助hhg采纳,获得10
2秒前
别说话完成签到,获得积分10
2秒前
2秒前
3秒前
Lin完成签到,获得积分10
4秒前
SY发布了新的文献求助10
4秒前
4秒前
Andy发布了新的文献求助10
6秒前
陶醉薯片完成签到,获得积分10
6秒前
7秒前
ZeJ完成签到,获得积分20
7秒前
852应助申雪狐采纳,获得10
7秒前
Fan发布了新的文献求助30
8秒前
10秒前
uping完成签到,获得积分20
11秒前
万能图书馆应助一一采纳,获得10
11秒前
11秒前
hiyo发布了新的文献求助10
12秒前
天天快乐应助熊11采纳,获得10
12秒前
12秒前
xiaofenzi发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
16秒前
费乐巧发布了新的文献求助10
18秒前
万能图书馆应助万默采纳,获得10
18秒前
w1发布了新的文献求助10
19秒前
Nurali完成签到,获得积分10
19秒前
申雪狐发布了新的文献求助10
19秒前
Andy完成签到,获得积分10
19秒前
鸡翅发布了新的文献求助20
20秒前
xmy发布了新的文献求助10
20秒前
asdfghjkl发布了新的文献求助10
20秒前
7t1n9发布了新的文献求助10
20秒前
Gallager发布了新的文献求助10
22秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153477
求助须知:如何正确求助?哪些是违规求助? 2804686
关于积分的说明 7860928
捐赠科研通 2462634
什么是DOI,文献DOI怎么找? 1310875
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601794