Dealing with Uncertainty: Understanding the Impact of Prognostic Versus Diagnostic Tasks on Trust and Reliance in Human-AI Decision Making

任务(项目管理) 计算机科学 背景(考古学) 实证研究 人工智能 领域(数学分析) 任务分析 机器学习 知识管理 工程类 古生物学 数学分析 哲学 数学 认识论 生物 系统工程
作者
Sara Salimzadeh,Gaole He,Ujwal Gadiraju
标识
DOI:10.1145/3613904.3641905
摘要

While existing literature has explored and revealed several insights pertaining to the role of human factors (e.g., prior experience, domain knowledge) and attributes of AI systems (e.g., accuracy, trustworthiness), there is a limited understanding around how the important task characteristics of complexity and uncertainty shape human decision-making and human-AI team performance. In this work, we aim to address this research and empirical gap by systematically exploring how task complexity and uncertainty influence human-AI decision-making. Task complexity refers to the load of information associated with a task, while task uncertainty refers to the level of unpredictability associated with the outcome of a task. We conducted a between-subjects user study (N = 258) in the context of a trip-planning task to investigate the impact of task complexity and uncertainty on human trust and reliance on AI systems. Our results revealed that task complexity and uncertainty have a significant impact on user reliance on AI systems. When presented with complex and uncertain tasks, users tended to rely more on AI systems while demonstrating lower levels of appropriate reliance compared to tasks that were less complex and uncertain. In contrast, we found that user trust in the AI systems was not influenced by task complexity and uncertainty. Our findings can help inform the future design of empirical studies exploring human-AI decision-making. Insights from this work can inform the design of AI systems and interventions that are better aligned with the challenges posed by complex and uncertain tasks. Finally, the lens of diagnostic versus prognostic tasks can inspire the operationalization of uncertainty in human-AI decision-making studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向连虎发布了新的文献求助10
1秒前
1秒前
小草莓完成签到,获得积分10
4秒前
小王爱看文献完成签到 ,获得积分10
5秒前
6秒前
6秒前
sereno发布了新的文献求助10
6秒前
cjw完成签到 ,获得积分10
7秒前
十九集完成签到,获得积分10
7秒前
赘婿应助霄洒瞎客采纳,获得10
9秒前
10秒前
向连虎完成签到,获得积分10
10秒前
10秒前
纯真玉兰完成签到 ,获得积分10
11秒前
FashionBoy应助谷雨下采纳,获得10
12秒前
12秒前
sonya发布了新的文献求助10
12秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得30
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
邱近实发布了新的文献求助30
14秒前
辛勤的铁身完成签到,获得积分10
16秒前
16秒前
17秒前
111发布了新的文献求助10
17秒前
19秒前
20秒前
22秒前
22秒前
麻辣牛肉完成签到,获得积分10
25秒前
doctorhuo完成签到 ,获得积分10
25秒前
霄洒瞎客发布了新的文献求助10
26秒前
Owen应助张秋雨采纳,获得10
26秒前
柒月完成签到 ,获得积分10
28秒前
小马甲应助炫技且谦虚采纳,获得10
29秒前
邱近实完成签到,获得积分10
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271238
求助须知:如何正确求助?哪些是违规求助? 2910413
关于积分的说明 8354247
捐赠科研通 2580929
什么是DOI,文献DOI怎么找? 1403876
科研通“疑难数据库(出版商)”最低求助积分说明 656013
邀请新用户注册赠送积分活动 635441