亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Full-waveform hyperspectral LiDAR data decomposition via ranking central locations of natural target echoes (Rclonte) at different wavelengths

遥感 高光谱成像 激光雷达 波长 波形 地质学 计算机科学 光学 雷达 电信 物理
作者
Jie Bai,Zheng Niu,Yanru Huang,Kaiyi Bi,Yuwen Fu,Shuai Gao,Mingquan Wu,Wang Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:310: 114227-114227 被引量:2
标识
DOI:10.1016/j.rse.2024.114227
摘要

The novel hyperspectral LiDAR (HSL) system exhibits the aptitude to simultaneously capture both spectral and geometric information from the hyperspectral waveform data. However, conventional single-wavelength decomposition methods may not be compatible with HSL waveforms due to higher levels of unstable noise, more complex waveform shapes, and inconsistent time delay effects at different wavelengths within the hyperspectral waveforms. These limitations pose significant challenges for quantitative applications of the HSL system. To overcome these issues, an imperative and pressing need is to search for a suitable waveform processing algorithm for the HSL system. Therefore, we propose a novel method called Ranking Central Locations of Natural Target Echoes (Rclonte) to decompose full-waveform hyperspectral LiDAR data. The Rclonte introduces a new parameter initialization strategy that includes rough estimation and refined estimation steps, preventing the optimization process from being trapped in a local optimum state. Subsequently, a re-optimization step over ranking central locations of natural target echoes at different wavelengths compensates for the missing detection or false detection of hidden weak and overlapping components within the waveform at some wavelengths. Two data collections, including the synthetic and measured HSL waveform data, were employed in the decomposition. The results indicate that (1) Rclonte detected components and parameters much more accurately with the highest R2 and the lowest RMSE and rRMSE values, outperforming the Hofton GD and MSWD methods. (2) Both the synthetic and measured data decomposition results highlight the effectiveness and the apparent superiority of Rclonte over Hofton GD and MSWD regarding compensating for the hidden weak or overlapping components. (3) The ranging results indicate that Rclonte achieves the highest ranging precision with low relative neighbor distance error (RNDE) (0.026∼0.085) for the measured data. (4) The spectra derived from Rclonte are superior to Hofton GD and MSWD methods. The smoothed version of the retrieved spectrum using Rclonte decomposition results presents a spectral similarity to the HSL-measured reflectance spectrum of a single leaf. The proposed method comprehensively utilizes the invariance of the central location orders of multiple targets at different wavelengths to ensure accurate detection. It not only facilitates the development of decomposition algorithms for full-waveform hyperspectral LiDAR data but also holds promise for adoption in other full-waveform multispectral LiDAR (MSL) and HSL systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingfeng完成签到,获得积分10
刚刚
FashionBoy应助犬来八荒采纳,获得20
刚刚
lx完成签到,获得积分10
2秒前
bkagyin应助张璟博采纳,获得10
10秒前
踏实白柏完成签到 ,获得积分10
31秒前
32秒前
明亮的老四完成签到 ,获得积分10
47秒前
47秒前
好人发布了新的文献求助30
54秒前
好人完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Epiphany采纳,获得10
1分钟前
1分钟前
张璟博发布了新的文献求助10
1分钟前
犬来八荒发布了新的文献求助20
1分钟前
可爱的函函应助张璟博采纳,获得10
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
1分钟前
TXZ06发布了新的文献求助30
1分钟前
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
1分钟前
饼子完成签到 ,获得积分10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
2分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
kuoping完成签到,获得积分0
3分钟前
4分钟前
4分钟前
TXZ06发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
Yuuuan完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634920
求助须知:如何正确求助?哪些是违规求助? 4734247
关于积分的说明 14989490
捐赠科研通 4792667
什么是DOI,文献DOI怎么找? 2559733
邀请新用户注册赠送积分活动 1520066
关于科研通互助平台的介绍 1480128