Strategically designing and fabricating nitrogen and sulfur Co-doped g-C3N4 for accelerating photocatalytic H2 evolution

光催化 硫黄 兴奋剂 氮气 材料科学 纳米技术 化学工程 化学 催化作用 光电子学 工程类 冶金 有机化学
作者
Haitao Wang,Lianglang Yu,Jiahe Peng,Jing Zou,Jizhou Jiang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:208: 111-119 被引量:26
标识
DOI:10.1016/j.jmst.2024.05.005
摘要

Doping engineering is an effective strategy for graphitic carbon nitride (g-C3N4) to improve its photocatalytic hydrogen evolution reaction (HER) performance. In this work, a novel nitrogen and sulfur co-doped g-C3N4 (N, S-g-C3N4) is elaborately designed on the basis of theoretical predictions of first-principle density functional theory (DFT). The calculated Gibbs free energy of adsorbed hydrogen (ΔGH*) for N, S-g-C3N4 at the N-doping active sites is extremely close to zero (0.01 eV). Inspired by the theoretical predictions, the N, S-g-C3N4 is successfully fabricated through ammonia-rich pyrolysis synthesis strategy, in which ammonia is in-situ obtained by pyrolyzing melamine. Subsequent characterizations indicate that the N, S-g-C3N4 possesses high specific surface area, outstanding light utilization, good hydrophilicity, and efficient carrier transfer efficiency. Consequently, the N, S-g-C3N4 displays an extremely high H2 evolution rate of 8269.9 μmol g-1 h-1, achieves an apparent quantum efficiency (AQE) of 3.24 %, and also possesses outsatnding durability. Theoretical calculations further demonstrate that N and S dopants can not only introduce doping energy level to reduce the band gap, but also induce charge redistribution to facilitate hydrogen adsorption, thus promoting the photocatalytic HER process. Moreover, femtosecond transient absorption (fs-TA) spectroscopy further corroborates the efficient photogenerated carrier transport of N, S-g-C3N4. This research highlights a promising and reliable strategy to achieve superior photocatalytic activity, and exhibits significant guidance for precise designing high-efficiency photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
车灵寒完成签到,获得积分10
1秒前
你好完成签到 ,获得积分10
2秒前
2秒前
爆米花应助秋季采纳,获得10
2秒前
3秒前
ding应助Hjj采纳,获得10
3秒前
chensiyao完成签到 ,获得积分10
3秒前
CATT完成签到,获得积分10
4秒前
4秒前
坚强的广山应助称心如意采纳,获得200
4秒前
4秒前
山上的树发布了新的文献求助10
4秒前
4秒前
Luckyhai完成签到,获得积分10
5秒前
NexusExplorer应助LEE采纳,获得30
5秒前
5秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
6秒前
6秒前
我是老大应助jackycas采纳,获得10
7秒前
活力的雨雪完成签到,获得积分10
7秒前
7秒前
蜂蜜柚子发布了新的文献求助30
7秒前
7秒前
一汪发布了新的文献求助10
8秒前
小蓝完成签到,获得积分10
9秒前
大雄完成签到,获得积分10
9秒前
小翼发布了新的文献求助10
9秒前
chenxiang发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
ssh发布了新的文献求助10
10秒前
LXiao完成签到,获得积分10
10秒前
CodeCraft应助cc采纳,获得10
11秒前
11秒前
1111完成签到,获得积分10
11秒前
12秒前
LI完成签到,获得积分10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473664
求助须知:如何正确求助?哪些是违规求助? 3066242
关于积分的说明 9097543
捐赠科研通 2757303
什么是DOI,文献DOI怎么找? 1512843
邀请新用户注册赠送积分活动 699164
科研通“疑难数据库(出版商)”最低求助积分说明 698843