A Developed Model Based on Machine Learning Algorithms for Phishing Website Detection

网络钓鱼 计算机科学 机器学习 人工智能 算法 万维网 互联网
作者
Hussein Abdel-Jaber,Hussein Al Bazar,Muawya Naser
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (2)
标识
DOI:10.2174/0126662558323858240612064259
摘要

Introduction: Users are accessing websites for many purposes, such as obtaining information about a particular topic, buying items, accessing their accounts, etc. Cybercriminals use phishing websites to attain the sensitive information of the users, like usernames and passwords, credit card details, etc. Detecting phishing websites helps in protecting the information and the money of people. Machine learning algorithms can be applied to detect phishing websites. Methods: In this paper, a model based on various machine learning algorithms is developed to detect phishing websites. The machine learning algorithms used in this model are Decision Tree, Random Forest, Extra Trees, K-Nearest Neighbors, Multilayer Perceptron and Support Vector Machine. The dataset of phishing websites is taken from the Kaggle website. The algorithms mentioned above of the developed model are compared together to identify which algorithm has better classification results. Results: The extra trees algorithm offers the best results for accuracy, precision, and F1- Score. This paper also compares the developed model with a previous model that uses the same dataset and relies upon decision tree, random forest, and support vector machine to determine which model has better classification report results. The developed model, depending on the Decision Tree and SVM, offers better classification results than those of the previous models. The developed model is compared with another preceding model relying upon Decision Tree and Random Forest algorithms to determine which model generates better results for accuracy, precision, recall/sensitivity, and F1-Score. Conclusion: The developed model, depending on the Decision Tree, presents better results for accuracy, recall, and F1-Score than the results of accuracy, sensitivity, and F1-Score for the preceding model based on the Decision Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助时尚数据线采纳,获得10
1秒前
情怀应助焕颜采纳,获得10
1秒前
沉鸠完成签到,获得积分10
1秒前
clay_park发布了新的文献求助10
1秒前
哈哈完成签到 ,获得积分10
1秒前
马户发布了新的文献求助10
2秒前
老板多加折耳根完成签到,获得积分10
2秒前
2秒前
3秒前
5秒前
Leon Lai完成签到,获得积分10
5秒前
5秒前
马户完成签到,获得积分10
7秒前
7秒前
8秒前
xiaoxiao晓完成签到,获得积分10
8秒前
Mian发布了新的文献求助10
8秒前
10秒前
11秒前
机智乐天发布了新的文献求助10
11秒前
11秒前
口外彭于晏完成签到,获得积分10
12秒前
Dashihhhh发布了新的文献求助10
13秒前
焕颜发布了新的文献求助10
15秒前
阔达网络发布了新的文献求助10
15秒前
Mian完成签到,获得积分10
15秒前
精明的白竹完成签到,获得积分20
15秒前
枯萎的蓝天完成签到 ,获得积分10
15秒前
氙气飘飘完成签到 ,获得积分10
15秒前
巧克力完成签到 ,获得积分10
15秒前
谷雨发布了新的文献求助10
16秒前
17秒前
20秒前
吴彦祖发布了新的文献求助10
20秒前
等你下课完成签到 ,获得积分10
20秒前
徐悦完成签到,获得积分10
20秒前
21秒前
wisdom完成签到,获得积分0
23秒前
子车代芙发布了新的文献求助10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512588
求助须知:如何正确求助?哪些是违规求助? 3095007
关于积分的说明 9225655
捐赠科研通 2789852
什么是DOI,文献DOI怎么找? 1530910
邀请新用户注册赠送积分活动 711166
科研通“疑难数据库(出版商)”最低求助积分说明 706626