亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Developed Model Based on Machine Learning Algorithms for Phishing Website Detection

网络钓鱼 计算机科学 机器学习 人工智能 算法 万维网 互联网
作者
Hussein Abdel-Jaber,Hussein Al Bazar,Muawya Naser
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (2)
标识
DOI:10.2174/0126662558323858240612064259
摘要

Introduction: Users are accessing websites for many purposes, such as obtaining information about a particular topic, buying items, accessing their accounts, etc. Cybercriminals use phishing websites to attain the sensitive information of the users, like usernames and passwords, credit card details, etc. Detecting phishing websites helps in protecting the information and the money of people. Machine learning algorithms can be applied to detect phishing websites. Methods: In this paper, a model based on various machine learning algorithms is developed to detect phishing websites. The machine learning algorithms used in this model are Decision Tree, Random Forest, Extra Trees, K-Nearest Neighbors, Multilayer Perceptron and Support Vector Machine. The dataset of phishing websites is taken from the Kaggle website. The algorithms mentioned above of the developed model are compared together to identify which algorithm has better classification results. Results: The extra trees algorithm offers the best results for accuracy, precision, and F1- Score. This paper also compares the developed model with a previous model that uses the same dataset and relies upon decision tree, random forest, and support vector machine to determine which model has better classification report results. The developed model, depending on the Decision Tree and SVM, offers better classification results than those of the previous models. The developed model is compared with another preceding model relying upon Decision Tree and Random Forest algorithms to determine which model generates better results for accuracy, precision, recall/sensitivity, and F1-Score. Conclusion: The developed model, depending on the Decision Tree, presents better results for accuracy, recall, and F1-Score than the results of accuracy, sensitivity, and F1-Score for the preceding model based on the Decision Tree.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
3秒前
小智完成签到,获得积分10
3秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
小智发布了新的文献求助10
6秒前
耕云钓月发布了新的文献求助10
9秒前
12秒前
15秒前
19秒前
然463完成签到 ,获得积分10
19秒前
20秒前
20秒前
夜夜景发布了新的文献求助10
23秒前
24秒前
美美发布了新的文献求助10
27秒前
李爱国应助shinn采纳,获得10
27秒前
忆修发布了新的文献求助30
30秒前
39秒前
40秒前
40秒前
41秒前
ly发布了新的文献求助10
42秒前
LL完成签到 ,获得积分10
45秒前
shinn发布了新的文献求助10
46秒前
美美完成签到,获得积分10
46秒前
众人皆醉我独醒完成签到,获得积分10
48秒前
48秒前
BowieHuang应助oleskarabach采纳,获得10
53秒前
53秒前
patrickli发布了新的文献求助10
55秒前
Tree_QD完成签到 ,获得积分10
59秒前
Jasper应助Yikepp采纳,获得10
1分钟前
1分钟前
1分钟前
直率的醉冬完成签到,获得积分10
1分钟前
CipherSage应助shinn采纳,获得10
1分钟前
patrickli完成签到,获得积分10
1分钟前
欢呼宛秋完成签到,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247