已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Developed Model Based on Machine Learning Algorithms for Phishing Website Detection

网络钓鱼 计算机科学 机器学习 人工智能 算法 万维网 互联网
作者
Hussein Abdel-Jaber,Hussein Al Bazar,Muawya Naser
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (2)
标识
DOI:10.2174/0126662558323858240612064259
摘要

Introduction: Users are accessing websites for many purposes, such as obtaining information about a particular topic, buying items, accessing their accounts, etc. Cybercriminals use phishing websites to attain the sensitive information of the users, like usernames and passwords, credit card details, etc. Detecting phishing websites helps in protecting the information and the money of people. Machine learning algorithms can be applied to detect phishing websites. Methods: In this paper, a model based on various machine learning algorithms is developed to detect phishing websites. The machine learning algorithms used in this model are Decision Tree, Random Forest, Extra Trees, K-Nearest Neighbors, Multilayer Perceptron and Support Vector Machine. The dataset of phishing websites is taken from the Kaggle website. The algorithms mentioned above of the developed model are compared together to identify which algorithm has better classification results. Results: The extra trees algorithm offers the best results for accuracy, precision, and F1- Score. This paper also compares the developed model with a previous model that uses the same dataset and relies upon decision tree, random forest, and support vector machine to determine which model has better classification report results. The developed model, depending on the Decision Tree and SVM, offers better classification results than those of the previous models. The developed model is compared with another preceding model relying upon Decision Tree and Random Forest algorithms to determine which model generates better results for accuracy, precision, recall/sensitivity, and F1-Score. Conclusion: The developed model, depending on the Decision Tree, presents better results for accuracy, recall, and F1-Score than the results of accuracy, sensitivity, and F1-Score for the preceding model based on the Decision Tree.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豪的洋葱完成签到,获得积分10
1秒前
lf发布了新的文献求助10
1秒前
haprier完成签到 ,获得积分10
3秒前
4秒前
专注的兰完成签到 ,获得积分10
4秒前
5秒前
felix完成签到,获得积分10
6秒前
Jasper应助显隐采纳,获得10
9秒前
小玉完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
寒冷南晴完成签到,获得积分10
11秒前
七月份的风完成签到 ,获得积分10
12秒前
大力的忆霜完成签到 ,获得积分10
12秒前
大方的曼容完成签到 ,获得积分10
13秒前
wlp鹏完成签到,获得积分10
13秒前
不与仙同完成签到 ,获得积分10
13秒前
sweet完成签到 ,获得积分10
13秒前
明理宛秋完成签到 ,获得积分10
15秒前
hh完成签到,获得积分10
16秒前
nipoo完成签到 ,获得积分10
16秒前
贾芙蓉完成签到,获得积分20
17秒前
抱素完成签到,获得积分10
18秒前
asd1576562308完成签到 ,获得积分10
19秒前
PEIfq完成签到 ,获得积分10
19秒前
潇涯应助畅快的涵蕾采纳,获得10
19秒前
清新的宛丝完成签到,获得积分10
19秒前
卿霜完成签到 ,获得积分10
20秒前
bkagyin应助此花此叶采纳,获得10
21秒前
大蛋老师应助显隐采纳,获得10
21秒前
21秒前
23秒前
悦耳念梦完成签到,获得积分10
24秒前
乐乐应助贾芙蓉采纳,获得10
24秒前
繁笙完成签到 ,获得积分10
25秒前
娜娜子完成签到 ,获得积分10
26秒前
寇博翔完成签到,获得积分10
27秒前
昏睡的绍辉完成签到,获得积分10
27秒前
鲁路修完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571