A Developed Model Based on Machine Learning Algorithms for Phishing Website Detection

网络钓鱼 计算机科学 机器学习 人工智能 算法 万维网 互联网
作者
Hussein Abdel-Jaber,Hussein Al Bazar,Muawya Naser
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (2)
标识
DOI:10.2174/0126662558323858240612064259
摘要

Introduction: Users are accessing websites for many purposes, such as obtaining information about a particular topic, buying items, accessing their accounts, etc. Cybercriminals use phishing websites to attain the sensitive information of the users, like usernames and passwords, credit card details, etc. Detecting phishing websites helps in protecting the information and the money of people. Machine learning algorithms can be applied to detect phishing websites. Methods: In this paper, a model based on various machine learning algorithms is developed to detect phishing websites. The machine learning algorithms used in this model are Decision Tree, Random Forest, Extra Trees, K-Nearest Neighbors, Multilayer Perceptron and Support Vector Machine. The dataset of phishing websites is taken from the Kaggle website. The algorithms mentioned above of the developed model are compared together to identify which algorithm has better classification results. Results: The extra trees algorithm offers the best results for accuracy, precision, and F1- Score. This paper also compares the developed model with a previous model that uses the same dataset and relies upon decision tree, random forest, and support vector machine to determine which model has better classification report results. The developed model, depending on the Decision Tree and SVM, offers better classification results than those of the previous models. The developed model is compared with another preceding model relying upon Decision Tree and Random Forest algorithms to determine which model generates better results for accuracy, precision, recall/sensitivity, and F1-Score. Conclusion: The developed model, depending on the Decision Tree, presents better results for accuracy, recall, and F1-Score than the results of accuracy, sensitivity, and F1-Score for the preceding model based on the Decision Tree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果沛柔完成签到,获得积分10
刚刚
1秒前
所所应助鱼2333采纳,获得10
1秒前
小鱼发布了新的文献求助10
2秒前
山大王yoyo完成签到,获得积分10
2秒前
Ava应助wucl1990采纳,获得10
2秒前
2秒前
Sunrise完成签到,获得积分10
3秒前
苹果沛柔发布了新的文献求助10
3秒前
清爽的水蓝完成签到,获得积分10
3秒前
落叶完成签到,获得积分10
4秒前
LLL20240701发布了新的文献求助30
4秒前
wanci应助ciooli采纳,获得10
5秒前
小二郎应助义气的海瑶采纳,获得10
5秒前
丘比特应助如意书包采纳,获得10
5秒前
Ridley发布了新的文献求助10
5秒前
6秒前
隐形曼青应助lw采纳,获得10
6秒前
Lucas应助Serenity采纳,获得10
7秒前
无敌小帅发布了新的文献求助30
7秒前
香蕉觅云应助lvsehx采纳,获得10
7秒前
对苏完成签到,获得积分10
9秒前
9秒前
march应助Yellue采纳,获得20
9秒前
10秒前
心灵美复天完成签到,获得积分10
10秒前
Tan3837完成签到,获得积分10
11秒前
冷酷仙境的羊男完成签到 ,获得积分10
11秒前
11秒前
活泼一凤完成签到,获得积分10
11秒前
11秒前
12秒前
如初发布了新的文献求助10
12秒前
bkagyin应助小妮采纳,获得10
12秒前
肚子圆圆的完成签到 ,获得积分10
12秒前
程星宇发布了新的文献求助10
13秒前
bkagyin应助315947采纳,获得30
13秒前
烂漫的汲完成签到,获得积分10
13秒前
14秒前
精明的橘子完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620