亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Developed Model Based on Machine Learning Algorithms for Phishing Website Detection

网络钓鱼 计算机科学 机器学习 人工智能 算法 万维网 互联网
作者
Hussein Abdel-Jaber,Hussein Al Bazar,Muawya Naser
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (2)
标识
DOI:10.2174/0126662558323858240612064259
摘要

Introduction: Users are accessing websites for many purposes, such as obtaining information about a particular topic, buying items, accessing their accounts, etc. Cybercriminals use phishing websites to attain the sensitive information of the users, like usernames and passwords, credit card details, etc. Detecting phishing websites helps in protecting the information and the money of people. Machine learning algorithms can be applied to detect phishing websites. Methods: In this paper, a model based on various machine learning algorithms is developed to detect phishing websites. The machine learning algorithms used in this model are Decision Tree, Random Forest, Extra Trees, K-Nearest Neighbors, Multilayer Perceptron and Support Vector Machine. The dataset of phishing websites is taken from the Kaggle website. The algorithms mentioned above of the developed model are compared together to identify which algorithm has better classification results. Results: The extra trees algorithm offers the best results for accuracy, precision, and F1- Score. This paper also compares the developed model with a previous model that uses the same dataset and relies upon decision tree, random forest, and support vector machine to determine which model has better classification report results. The developed model, depending on the Decision Tree and SVM, offers better classification results than those of the previous models. The developed model is compared with another preceding model relying upon Decision Tree and Random Forest algorithms to determine which model generates better results for accuracy, precision, recall/sensitivity, and F1-Score. Conclusion: The developed model, depending on the Decision Tree, presents better results for accuracy, recall, and F1-Score than the results of accuracy, sensitivity, and F1-Score for the preceding model based on the Decision Tree.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到 ,获得积分10
1秒前
青空完成签到 ,获得积分10
2秒前
MiYinZzz完成签到 ,获得积分10
13秒前
田様应助Emma采纳,获得10
13秒前
呆萌井完成签到,获得积分10
15秒前
15秒前
Ddz完成签到,获得积分10
28秒前
28秒前
30秒前
忧虑的羊完成签到 ,获得积分10
32秒前
Emma发布了新的文献求助10
34秒前
ding应助沉静乐菱采纳,获得10
41秒前
Emma完成签到,获得积分10
42秒前
Lucas应助小顾采纳,获得10
42秒前
43秒前
搜集达人应助ttstephen采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
lemon发布了新的文献求助10
1分钟前
123456完成签到 ,获得积分20
1分钟前
1分钟前
善学以致用应助xiaohaitang采纳,获得10
1分钟前
啧啧完成签到 ,获得积分10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
1分钟前
星辰大海应助123456采纳,获得10
1分钟前
zzz发布了新的文献求助10
1分钟前
1分钟前
逸风望发布了新的文献求助10
1分钟前
moon完成签到 ,获得积分10
1分钟前
Linda完成签到 ,获得积分10
1分钟前
小白菜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
含蓄可冥完成签到,获得积分10
1分钟前
小白菜完成签到,获得积分10
1分钟前
小顾发布了新的文献求助10
1分钟前
shugefuhe发布了新的文献求助10
1分钟前
科研王者发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622146
求助须知:如何正确求助?哪些是违规求助? 4707067
关于积分的说明 14938433
捐赠科研通 4768281
什么是DOI,文献DOI怎么找? 2552148
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005