G2ViT: Graph Neural Network-Guided Vision Transformer Enhanced Network for retinal vessel and coronary angiograph segmentation

人工神经网络 计算机科学 人工智能 视网膜 分割 变压器 血管网 计算机视觉 图形 模式识别(心理学) 医学 眼科 解剖 工程类 理论计算机科学 电气工程 电压
作者
Hao Xu,Yun Wu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:176: 106356-106356 被引量:10
标识
DOI:10.1016/j.neunet.2024.106356
摘要

Blood vessel segmentation is a crucial stage in extracting morphological characteristics of vessels for the clinical diagnosis of fundus and coronary artery disease. However, traditional convolutional neural networks (CNNs) are confined to learning local vessel features, making it challenging to capture the graph structural information and fail to perceive the global context of vessels. Therefore, we propose a novel graph neural network-guided vision transformer enhanced network (G2ViT) for vessel segmentation. G2ViT skillfully orchestrates the Convolutional Neural Network, Graph Neural Network, and Vision Transformer to enhance comprehension of the entire graphical structure of blood vessels. To achieve deeper insights into the global graph structure and higher-level global context cognizance, we investigate a graph neural network-guided vision transformer module. This module constructs graph-structured representation in an unprecedented manner using the high-level features extracted by CNNs for graph reasoning. To increase the receptive field while ensuring minimal loss of edge information, G2ViT introduces a multi-scale edge feature attention module (MEFA), leveraging dilated convolutions with different dilation rates and the Sobel edge detection algorithm to obtain multi-scale edge information of vessels. To avoid critical information loss during upsampling and downsampling, we design a multi-level feature fusion module (MLF2) to fuse complementary information between coarse and fine features. Experiments on retinal vessel datasets (DRIVE, STARE, CHASE_DB1, and HRF) and coronary angiography datasets (DCA1 and CHUAC) indicate that the G2ViT excels in robustness, generality, and applicability. Furthermore, it has acceptable inference time and computational complexity and presents a new solution for blood vessel segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助猪猪侠采纳,获得10
刚刚
blingl发布了新的文献求助30
刚刚
简单火龙果完成签到,获得积分10
刚刚
kuoping完成签到,获得积分0
刚刚
Okayoooooo发布了新的文献求助10
1秒前
2秒前
木樨完成签到,获得积分10
6秒前
善良的火完成签到 ,获得积分10
6秒前
Palpitate发布了新的文献求助10
6秒前
星辰大海应助香菜芋头采纳,获得10
6秒前
shinn发布了新的文献求助10
7秒前
Xiaoxiao应助敏感雅香采纳,获得10
7秒前
高贵伟诚关注了科研通微信公众号
7秒前
跑山猪完成签到,获得积分10
8秒前
KobeLaoda完成签到,获得积分20
8秒前
jawa完成签到 ,获得积分10
8秒前
完美世界应助无辜叫兽采纳,获得10
8秒前
8秒前
9秒前
科研通AI5应助DDD采纳,获得10
9秒前
10秒前
Panther完成签到,获得积分10
12秒前
fjnm完成签到,获得积分10
12秒前
U9A发布了新的文献求助10
15秒前
清脆大树发布了新的文献求助30
15秒前
18秒前
19秒前
21秒前
yiw发布了新的文献求助10
23秒前
Lucas应助花生YZ采纳,获得10
23秒前
传奇3应助武雨寒采纳,获得10
24秒前
24秒前
Yu关闭了Yu文献求助
25秒前
DDD发布了新的文献求助10
26秒前
27秒前
马琛尧发布了新的文献求助10
27秒前
田様应助辛勤的听枫采纳,获得10
27秒前
28秒前
guosien发布了新的文献求助10
29秒前
liujj完成签到,获得积分20
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517