G2ViT: Graph Neural Network-Guided Vision Transformer Enhanced Network for retinal vessel and coronary angiograph segmentation

人工神经网络 计算机科学 人工智能 视网膜 分割 变压器 血管网 计算机视觉 图形 模式识别(心理学) 医学 眼科 解剖 工程类 理论计算机科学 电气工程 电压
作者
Hao Xu,Yun Wu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:176: 106356-106356 被引量:22
标识
DOI:10.1016/j.neunet.2024.106356
摘要

Blood vessel segmentation is a crucial stage in extracting morphological characteristics of vessels for the clinical diagnosis of fundus and coronary artery disease. However, traditional convolutional neural networks (CNNs) are confined to learning local vessel features, making it challenging to capture the graph structural information and fail to perceive the global context of vessels. Therefore, we propose a novel graph neural network-guided vision transformer enhanced network (G2ViT) for vessel segmentation. G2ViT skillfully orchestrates the Convolutional Neural Network, Graph Neural Network, and Vision Transformer to enhance comprehension of the entire graphical structure of blood vessels. To achieve deeper insights into the global graph structure and higher-level global context cognizance, we investigate a graph neural network-guided vision transformer module. This module constructs graph-structured representation in an unprecedented manner using the high-level features extracted by CNNs for graph reasoning. To increase the receptive field while ensuring minimal loss of edge information, G2ViT introduces a multi-scale edge feature attention module (MEFA), leveraging dilated convolutions with different dilation rates and the Sobel edge detection algorithm to obtain multi-scale edge information of vessels. To avoid critical information loss during upsampling and downsampling, we design a multi-level feature fusion module (MLF2) to fuse complementary information between coarse and fine features. Experiments on retinal vessel datasets (DRIVE, STARE, CHASE_DB1, and HRF) and coronary angiography datasets (DCA1 and CHUAC) indicate that the G2ViT excels in robustness, generality, and applicability. Furthermore, it has acceptable inference time and computational complexity and presents a new solution for blood vessel segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助优美巨人采纳,获得10
刚刚
1秒前
1秒前
1秒前
施宇宙完成签到,获得积分10
1秒前
科研入门小萌新完成签到,获得积分10
1秒前
夜安完成签到 ,获得积分10
2秒前
2秒前
Hello应助aaaa采纳,获得10
2秒前
Owen应助科芒采纳,获得10
2秒前
善学以致用应助辽阳太子采纳,获得10
2秒前
gaw2008完成签到,获得积分10
3秒前
3秒前
李zhu发布了新的文献求助10
3秒前
坦率听荷发布了新的文献求助10
4秒前
4秒前
4秒前
JamesPei应助拼搏惜蕊采纳,获得10
4秒前
ding应助qiuzi采纳,获得10
5秒前
wudizhuzhu233发布了新的文献求助10
5秒前
5秒前
婕婕子完成签到,获得积分10
5秒前
5秒前
一位用户发布了新的文献求助10
6秒前
Nicole发布了新的文献求助10
6秒前
xydmmm发布了新的文献求助10
6秒前
烟花应助dablack采纳,获得10
6秒前
爆米花应助Tomsen采纳,获得10
6秒前
6秒前
糖葫芦发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
浩二完成签到,获得积分10
9秒前
周星星发布了新的文献求助10
9秒前
10秒前
10秒前
大模型应助十三采纳,获得10
10秒前
我必中发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020