化学
海水
环境化学
金属
重金属
光学传感
光电子学
海洋学
地质学
物理
有机化学
作者
Yu Ma,Mengnan Li,Xin Qi,Yanyu Cao,Wanting Zhang,Guorui Gao,Bo Tang
标识
DOI:10.1021/acs.analchem.4c00947
摘要
Water pollution originating from heavy metals has shown great impacts on the ecological environment and human health due to their extremely low biodegradability. Hexavalent chromium Cr(VI), as one harmful heavy metal with strong oxidation, high biological permeability, and high carcinogenicity, is becoming an increasingly serious threat to human health. Therefore, conveniently but accurately, monitoring the Cr(VI) level in water to maintain its normal level and ensuring the stability of the ecosystem and human health become very valuable. However, most of these heavy metal sensors reported are turn-off type single-emission sensors. In this work, a ratiometric fluorescence/colorimetry/smartphone triple-mode turn-on optical sensor for Cr(VI) was developed based on a multifunctional metal–organic framework platform. The detection limits for these three mutual verification modes were only 1.28, 4.89, and 68.4 nM, respectively. Additionally, the color changes of the detection system under sunlight can also be observed directly by the naked eye. The accuracy and practicability of this multimode sensor were further proved by the detection of Cr(VI) in actual water and seawater samples, and the recovery rate ranged from 97.308 to 104.041%.
科研通智能强力驱动
Strongly Powered by AbleSci AI