Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

木糖 代谢工程 木质纤维素生物量 乳酸 水解物 化学 食品科学 生物化学 水解 生物 发酵 细菌 遗传学
作者
Bo-hyun Choi,Albert Tafur Rangel,Eduard J. Kerkhoven,Yvonne Nygård
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:84: 23-33 被引量:1
标识
DOI:10.1016/j.ymben.2024.05.003
摘要

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid /g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peijiang完成签到,获得积分10
刚刚
4秒前
完美世界应助研友_ZG4ml8采纳,获得10
4秒前
4秒前
坚强亦丝应助羊阳采纳,获得10
5秒前
5秒前
zuiai发布了新的文献求助10
6秒前
陈永伟发布了新的文献求助10
11秒前
传奇3应助陳.采纳,获得10
13秒前
瓦尔迪完成签到,获得积分10
13秒前
Pengzhuhuai完成签到 ,获得积分10
13秒前
14秒前
Schiller完成签到,获得积分10
14秒前
华仔应助独弦清音采纳,获得10
15秒前
17秒前
17秒前
17秒前
笨笨妙旋完成签到,获得积分20
17秒前
HHH发布了新的文献求助30
17秒前
缓慢冷安发布了新的文献求助10
19秒前
生锈的柳叶刀完成签到,获得积分10
20秒前
SYX发布了新的文献求助10
21秒前
21秒前
Solarenergy发布了新的文献求助10
22秒前
22秒前
隐形曼青应助潇洒的千山采纳,获得10
23秒前
可可期发布了新的文献求助10
24秒前
星星完成签到 ,获得积分10
24秒前
adam完成签到,获得积分10
24秒前
zen应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得150
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
芋鱼予郁应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
26秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825