Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

木糖 代谢工程 木质纤维素生物量 乳酸 水解物 化学 食品科学 生物化学 水解 生物 发酵 细菌 遗传学
作者
Bo-Hyun Choi,Albert Tafur Rangel,Eduard J. Kerkhoven,Yvonne Nygård
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:84: 23-33 被引量:3
标识
DOI:10.1016/j.ymben.2024.05.003
摘要

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid /g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟曼云发布了新的文献求助10
1秒前
1秒前
鲁卓林发布了新的文献求助10
1秒前
思源应助小鱼歪优采纳,获得10
2秒前
firmalter发布了新的文献求助10
2秒前
去码头整点薯条完成签到 ,获得积分10
3秒前
angelalxj发布了新的文献求助10
4秒前
7秒前
9秒前
欣喜面包完成签到 ,获得积分10
10秒前
王jj发布了新的文献求助10
10秒前
刘诗七完成签到,获得积分10
12秒前
魁梧的沛萍完成签到 ,获得积分10
12秒前
咸鱼打滚发布了新的文献求助10
13秒前
科研通AI6应助星星点点1234采纳,获得10
14秒前
15秒前
zhenyu0430发布了新的文献求助10
16秒前
顾羽完成签到,获得积分10
17秒前
18秒前
脑洞疼应助文静的海采纳,获得10
18秒前
18秒前
kiwi完成签到 ,获得积分10
18秒前
Akim应助王三岁采纳,获得10
19秒前
19秒前
浣熊发布了新的文献求助30
20秒前
兴奋千秋发布了新的文献求助10
20秒前
20秒前
丁可发布了新的文献求助10
24秒前
26秒前
瑞仔完成签到,获得积分10
26秒前
科研通AI6应助firmalter采纳,获得10
27秒前
27秒前
soapffz完成签到,获得积分0
27秒前
乐乐应助annali采纳,获得10
28秒前
msd2phd完成签到,获得积分10
28秒前
win完成签到 ,获得积分10
31秒前
32秒前
丁可完成签到,获得积分10
33秒前
34秒前
35秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225359
求助须知:如何正确求助?哪些是违规求助? 4397026
关于积分的说明 13685643
捐赠科研通 4261608
什么是DOI,文献DOI怎么找? 2338513
邀请新用户注册赠送积分活动 1335950
关于科研通互助平台的介绍 1291890