Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

木糖 代谢工程 木质纤维素生物量 乳酸 水解物 化学 食品科学 生物化学 水解 生物 发酵 细菌 遗传学
作者
Bo-Hyun Choi,Albert Tafur Rangel,Eduard J. Kerkhoven,Yvonne Nygård
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:84: 23-33 被引量:3
标识
DOI:10.1016/j.ymben.2024.05.003
摘要

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid /g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助菜狗先上采纳,获得20
2秒前
2秒前
Zhua子完成签到,获得积分10
4秒前
4秒前
5秒前
criz1发布了新的文献求助10
6秒前
白潇潇发布了新的文献求助10
6秒前
科研通AI6应助渡月桥采纳,获得10
7秒前
sfc999完成签到,获得积分10
8秒前
wangjialong发布了新的文献求助10
9秒前
Matthew_G完成签到,获得积分10
9秒前
10秒前
figure完成签到 ,获得积分10
10秒前
林白发布了新的文献求助30
10秒前
斯文败类应助花卷采纳,获得10
10秒前
111111发布了新的文献求助10
11秒前
苹果完成签到 ,获得积分20
12秒前
幽默阑悦完成签到,获得积分10
12秒前
13秒前
科研通AI6应助懦弱的丹秋采纳,获得10
15秒前
15秒前
无花果应助雪落采纳,获得10
16秒前
mdjinij发布了新的文献求助10
16秒前
16秒前
16秒前
悠悠发布了新的文献求助10
16秒前
小宋娘亲完成签到 ,获得积分10
17秒前
Ran完成签到 ,获得积分10
17秒前
Murphy完成签到,获得积分10
18秒前
19秒前
菠菜应助herococa采纳,获得150
20秒前
21秒前
22秒前
UP发布了新的文献求助10
22秒前
criz1完成签到,获得积分10
23秒前
23秒前
Ava应助白潇潇采纳,获得10
23秒前
无极微光应助岁月旧曾谙采纳,获得20
24秒前
bkagyin应助张佳宁采纳,获得10
24秒前
阳光绝山完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501