Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

木糖 代谢工程 木质纤维素生物量 乳酸 水解物 化学 食品科学 生物化学 水解 生物 发酵 细菌 遗传学
作者
Bo-Hyun Choi,Albert Tafur Rangel,Eduard J. Kerkhoven,Yvonne Nygård
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:84: 23-33 被引量:3
标识
DOI:10.1016/j.ymben.2024.05.003
摘要

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid /g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清秀语梦完成签到,获得积分10
1秒前
zyp1229完成签到,获得积分10
1秒前
Liu发布了新的文献求助10
2秒前
2秒前
2秒前
无花果应助struggling2026采纳,获得10
3秒前
3秒前
耕牛热发布了新的文献求助10
3秒前
3秒前
背后白梦发布了新的文献求助80
3秒前
鱼刺鱼刺卡完成签到,获得积分10
3秒前
星星完成签到,获得积分10
3秒前
chenshi0515完成签到 ,获得积分10
4秒前
4秒前
田攀发布了新的文献求助10
5秒前
5秒前
coolman冰人完成签到,获得积分20
5秒前
5秒前
华仔应助徐志豪采纳,获得10
6秒前
什么也难不倒我完成签到 ,获得积分10
6秒前
千里发布了新的文献求助10
6秒前
俊、、完成签到,获得积分10
7秒前
8秒前
8秒前
清秀语梦发布了新的文献求助10
8秒前
传奇3应助冲冲冲采纳,获得10
9秒前
10秒前
iNk应助QQiang6采纳,获得10
10秒前
耍酷皮皮虾完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
yzizz发布了新的文献求助10
11秒前
Hello应助yulj采纳,获得10
11秒前
今后应助RY文献下载采纳,获得10
12秒前
海水与风车完成签到,获得积分10
12秒前
ww发布了新的文献求助10
12秒前
fmy完成签到,获得积分10
12秒前
13秒前
顺心以柳完成签到 ,获得积分20
13秒前
潇潇雨歇完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285