已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Empirical Guidelines for Deploying LLMs onto Resource-constrained Edge Devices

GSM演进的增强数据速率 资源(消歧) 业务 计算机科学 电信 计算机网络
作者
Ruiyang Qin,Dancheng Liu,Zheyu Yan,Zhaoxuan Tan,Zixuan Pan,Zhenge Jia,Meng Jiang,Ahmed Abbasi,Jinjun Xiong,Yiyu Shi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.03777
摘要

The scaling laws have become the de facto guidelines for designing large language models (LLMs), but they were studied under the assumption of unlimited computing resources for both training and inference. As LLMs are increasingly used as personalized intelligent assistants, their customization (i.e., learning through fine-tuning) and deployment onto resource-constrained edge devices will become more and more prevalent. An urging but open question is how a resource-constrained computing environment would affect the design choices for a personalized LLM. We study this problem empirically in this work. In particular, we consider the tradeoffs among a number of key design factors and their intertwined impacts on learning efficiency and accuracy. The factors include the learning methods for LLM customization, the amount of personalized data used for learning customization, the types and sizes of LLMs, the compression methods of LLMs, the amount of time afforded to learn, and the difficulty levels of the target use cases. Through extensive experimentation and benchmarking, we draw a number of surprisingly insightful guidelines for deploying LLMs onto resource-constrained devices. For example, an optimal choice between parameter learning and RAG may vary depending on the difficulty of the downstream task, the longer fine-tuning time does not necessarily help the model, and a compressed LLM may be a better choice than an uncompressed LLM to learn from limited personalized data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiuyajing完成签到,获得积分10
2秒前
Jennifer发布了新的文献求助10
3秒前
小路发布了新的文献求助10
4秒前
桐桐应助leclare采纳,获得10
4秒前
HHHHH完成签到,获得积分20
5秒前
5秒前
王晓曼完成签到,获得积分10
5秒前
周立成完成签到,获得积分10
5秒前
5秒前
8秒前
魔幻安筠发布了新的文献求助10
9秒前
猪猪hero应助abiden采纳,获得10
11秒前
zhouli完成签到,获得积分10
13秒前
WTQ发布了新的文献求助10
13秒前
Jennifer完成签到,获得积分20
13秒前
16秒前
小猛人发布了新的文献求助50
18秒前
18秒前
18秒前
一年半太久只争朝夕完成签到,获得积分10
20秒前
科目三应助XLL小绿绿采纳,获得10
21秒前
ukgiuhilo发布了新的文献求助10
21秒前
abiden完成签到,获得积分20
23秒前
白石溪发布了新的文献求助10
24秒前
CHAIZH发布了新的文献求助10
25秒前
25秒前
26秒前
舒心寒天发布了新的文献求助10
27秒前
酷波er应助科研通管家采纳,获得10
28秒前
FIN应助科研通管家采纳,获得20
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
28秒前
yydragen应助科研通管家采纳,获得30
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得30
29秒前
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
个性凝天发布了新的文献求助10
30秒前
zhouli发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166315
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794163
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804626