亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining useful life prediction via a deep adaptive transformer framework enhanced by graph attention network

计算机科学 图形 变压器 提取器 深度学习 人工智能 数据挖掘 保险丝(电气) 注意力网络 模式识别(心理学) 机器学习 工程类 理论计算机科学 电压 工艺工程 电气工程
作者
Pengfei Liang,Ying Li,Bin Wang,Xiaoming Yuan,Lijie Zhang
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:174: 107722-107722 被引量:21
标识
DOI:10.1016/j.ijfatigue.2023.107722
摘要

Accurate monitoring of mechanical device conditions requires a large number of sensors working together. There are potential connections between sensors throughout the degradation monitoring process of mechanical devices. Conventional deep learning (DL) models suffer from the following shortcomings when dealing with this type of multi-sensor degraded data. To begin with, most existing methods based on DL mainly use CNN as the feature extractor, focusing too much on temporal correlations and ignoring spatial correlations of multiple sensors. Then, the most popular remaining useful life (RUL) model is based on recurrent neural network, which oftentimes suffer from the issue of gradient exploding and vanishing. Therefore, a bran-new end-to-end framework based on a deep adaptative transformer enhanced by graph attention network, named GAT-DAT, is proposed to tackle these weaknesses. First, the graph data is constructed by the correlation of sensors. Next, GAT submodules fuse node features to extract spatial correlation. Finally, the DAT submodule is used to efficiently abstract the temporal features of the data through a self-attention mechanism and adaptively implements RUL prediction for mechanical equipment. Two case studies are employed to attest the efficacy of our proposed GAT-DAT model and the analysis of the experimental data illustrates that the GAT-DAT framework outperforms the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
倾卿如玉完成签到 ,获得积分10
10秒前
cc发布了新的文献求助10
13秒前
13秒前
15秒前
充电宝应助cc采纳,获得10
21秒前
46秒前
55秒前
1分钟前
1分钟前
1分钟前
李慢慢发布了新的文献求助10
1分钟前
1分钟前
Destiny完成签到,获得积分10
1分钟前
李慢慢完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
个性雪糕发布了新的文献求助10
2分钟前
yan完成签到 ,获得积分10
2分钟前
2分钟前
Fling完成签到,获得积分10
2分钟前
3分钟前
cc发布了新的文献求助10
3分钟前
3分钟前
Hello应助cc采纳,获得10
3分钟前
小俊完成签到,获得积分10
3分钟前
善学以致用应助呆萌念梦采纳,获得10
3分钟前
叶思言完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
顺心凡之完成签到,获得积分10
4分钟前
Crh发布了新的文献求助10
4分钟前
传奇3应助叶思言采纳,获得10
4分钟前
Ava应助啵啵龙采纳,获得10
4分钟前
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307359
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500151
捐赠科研通 2615398
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410