已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction via a deep adaptive transformer framework enhanced by graph attention network

计算机科学 图形 变压器 提取器 深度学习 人工智能 数据挖掘 保险丝(电气) 注意力网络 模式识别(心理学) 机器学习 工程类 理论计算机科学 工艺工程 电气工程 电压
作者
Pengfei Liang,Ying Li,Bin Wang,Xiaoming Yuan,Lijie Zhang
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:174: 107722-107722 被引量:21
标识
DOI:10.1016/j.ijfatigue.2023.107722
摘要

Accurate monitoring of mechanical device conditions requires a large number of sensors working together. There are potential connections between sensors throughout the degradation monitoring process of mechanical devices. Conventional deep learning (DL) models suffer from the following shortcomings when dealing with this type of multi-sensor degraded data. To begin with, most existing methods based on DL mainly use CNN as the feature extractor, focusing too much on temporal correlations and ignoring spatial correlations of multiple sensors. Then, the most popular remaining useful life (RUL) model is based on recurrent neural network, which oftentimes suffer from the issue of gradient exploding and vanishing. Therefore, a bran-new end-to-end framework based on a deep adaptative transformer enhanced by graph attention network, named GAT-DAT, is proposed to tackle these weaknesses. First, the graph data is constructed by the correlation of sensors. Next, GAT submodules fuse node features to extract spatial correlation. Finally, the DAT submodule is used to efficiently abstract the temporal features of the data through a self-attention mechanism and adaptively implements RUL prediction for mechanical equipment. Two case studies are employed to attest the efficacy of our proposed GAT-DAT model and the analysis of the experimental data illustrates that the GAT-DAT framework outperforms the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中国人发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
3秒前
李健应助hhchhcmxhf采纳,获得10
3秒前
3秒前
bkagyin应助月光入梦采纳,获得10
5秒前
难过小懒虫完成签到,获得积分10
5秒前
5秒前
6秒前
Snieno完成签到,获得积分10
6秒前
逆天大脚完成签到,获得积分10
6秒前
7秒前
9秒前
L_93发布了新的文献求助10
10秒前
liuzi发布了新的文献求助10
10秒前
乐乐应助犹豫的铅笔采纳,获得10
11秒前
14秒前
君君发布了新的文献求助10
14秒前
大个应助半眠日记采纳,获得10
17秒前
18秒前
华生发布了新的文献求助30
18秒前
yx_cheng应助月光入梦采纳,获得10
19秒前
传奇3应助Rainsto采纳,获得30
21秒前
思想的小鱼完成签到,获得积分10
23秒前
25秒前
虬江学者完成签到,获得积分10
25秒前
周沛应助火星上的世立采纳,获得30
26秒前
dovejingling完成签到,获得积分10
27秒前
君君完成签到,获得积分10
27秒前
magiczhu完成签到,获得积分10
28秒前
学医梅西发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172