Development and External Validation of a Novel Nomogram Predicting Cancer-specific Mortality–free Survival in Surgically Treated Papillary Renal Cell Carcinoma Patients

列线图 医学 阶段(地层学) 比例危险模型 人口 队列 监测、流行病学和最终结果 肾细胞癌 肿瘤科 内科学 肾癌 流行病学 外科 癌症登记处 古生物学 环境卫生 生物
作者
Mattia Luca Piccinelli,Francesco Barletta,Stefano Tappero,Cristina Cano Garcia,Reha‐Baris Incesu,Simone Morra,Lukas Scheipner,Zhe Tian,Stefano Luzzago,Francesco A. Mistretta,Matteo Ferro,Fred Saad,Shahrokh F. Shariat,Sascha Ahyai,Nicola Longo,Derya Tilki,Felix K.‐H. Chun,Carlo Terrone,Alberto Briganti,Ottavio De Cobelli
出处
期刊:European urology focus [Elsevier BV]
卷期号:9 (5): 799-806 被引量:7
标识
DOI:10.1016/j.euf.2023.03.014
摘要

Background Accurate prediction of cancer control outcomes in renal cell carcinoma (RCC) patients is important for counselling, follow-up planning, and selection of appropriate adjuvant trial designs. Objective To develop and externally validate a novel contemporary population-based model for predicting cancer-specific mortality–free survival (CSM-FS) in surgically treated papillary RCC (papRCC) patients and to compare it with established risk categories (Leibovich 2018). Design, setting, and participants Within the Surveillance, Epidemiology, and End Results database (2004–2019), we identified surgically treated papRCC patients (n = 3978). The population was randomly divided into development (50%, n = 1989) and external validation (50%, n = 1989) cohorts. Of the external validation cohort, 97% (n = 1930) of patients were included in a head-to-head comparison of the Leibovich 2018 risk categories addressing nonmetastatic patients. Outcome measurements and statistical analysis Univariable Cox regression models tested the statistical significance in the prediction of CSM-FS. The most parsimonious model with the best validation metrics was selected as the multivariable nomogram. Accuracy, calibration, and decision curve analyses (DCAs) tested the Cox regression–based nomogram, as well as the Leibovich 2018 risk categories in the external validation cohort. Results and limitations Age at diagnosis, grade, T stage, N stage, and M stage qualified for inclusion in the novel nomogram. In external validation, the accuracy of the novel nomogram was 0.83 at 5 yr and 0.80 at 10 yr. In nonmetastatic patients, 5- and 10-yr accuracy of the novel nomogram was 0.77 and 0.76, respectively. Conversely, 5- and 10-yr accuracy of the Leibovich 2018 risk categories was 0.70 and 0.66, respectively. The novel nomogram exhibited smaller departures from ideal predictions in calibration plots and higher net benefit in DCAs, when it was compared with the Leibovich 2018 risk categories. Limitations include the retrospective nature of the study, absence of a central pathological review, and inclusion of only North American patients. Conclusions The novel nomogram may represent a valuable clinical aid, when papRCC CSM-FS predictions are required. Patient summary We developed an accurate tool to predict death due to papillary kidney cancer in a North American population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reset完成签到 ,获得积分10
5秒前
哥哥喜欢格格完成签到 ,获得积分10
8秒前
Xu完成签到,获得积分10
10秒前
邵邵发布了新的文献求助10
12秒前
扬帆起航完成签到 ,获得积分10
16秒前
勤恳书包完成签到,获得积分10
19秒前
杨冰钰关注了科研通微信公众号
21秒前
鲑鱼完成签到 ,获得积分10
25秒前
快乐冰之完成签到 ,获得积分10
26秒前
思源应助羽生结弦的馨馨采纳,获得10
26秒前
yanglian2003完成签到 ,获得积分10
27秒前
yyy完成签到 ,获得积分10
29秒前
C2750完成签到,获得积分10
30秒前
有魅力的书本完成签到 ,获得积分10
30秒前
巫巫巫巫巫完成签到 ,获得积分10
30秒前
愉快的犀牛完成签到 ,获得积分10
32秒前
DT完成签到 ,获得积分10
35秒前
科研小白完成签到 ,获得积分10
36秒前
充电宝应助木木采纳,获得10
38秒前
39秒前
小井盖完成签到 ,获得积分10
41秒前
青黛完成签到 ,获得积分10
42秒前
43秒前
44秒前
如履平川完成签到 ,获得积分10
45秒前
48秒前
杨冰钰发布了新的文献求助10
49秒前
ohwhale完成签到 ,获得积分10
53秒前
OVERSEER发布了新的文献求助10
54秒前
丁丁完成签到 ,获得积分10
56秒前
xie完成签到 ,获得积分10
1分钟前
CYYDNDB完成签到 ,获得积分10
1分钟前
blUe完成签到,获得积分10
1分钟前
共享精神应助20240901采纳,获得10
1分钟前
争气完成签到 ,获得积分10
1分钟前
热心的飞风完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
123456777完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686811
求助须知:如何正确求助?哪些是违规求助? 3237188
关于积分的说明 9829597
捐赠科研通 2949071
什么是DOI,文献DOI怎么找? 1617244
邀请新用户注册赠送积分活动 764147
科研通“疑难数据库(出版商)”最低求助积分说明 738360