强化学习
部分可观测马尔可夫决策过程
计算机科学
自动频率控制
马尔可夫决策过程
最优控制
可见的
马尔可夫过程
控制(管理)
自动发电控制
增强学习
多元化(营销策略)
过程(计算)
控制理论(社会学)
电力系统
数学优化
马尔可夫模型
马尔可夫链
人工智能
功率(物理)
机器学习
数学
电信
业务
操作系统
量子力学
营销
统计
物理
作者
Yuxin Ma,Zechun Hu,Yonghua Song
出处
期刊:IEEE Transactions on Power Systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:39 (1): 2239-2250
被引量:1
标识
DOI:10.1109/tpwrs.2023.3262543
摘要
As the diversification of frequency regulation resources, it is increasingly important to find a load frequency control (LFC) scheme that can effectively coordinate different resources. This paper proposes a coordinated but differentiated LFC control method that utilizes heterogeneous frequency regulation resources with their characteristics fully considered. The optimal LFC models for the single area and multi-area power systems are formulated as partially observable Markov decision process model (POMDP) and partially observable Markov game (POMG) considering the accessibility of system information. A deep reinforcement learning method called recurrent proximal policy optimization is leveraged to solve the POMDP and POMG models. Simulations based on historical data demonstrate that the proposed control scheme can better coordinate different resources and achieve superior control performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI