Land Use and Land Cover Mapping in China Using Multimodal Fine-Grained Dual Network

计算机科学 土地覆盖 分割 杠杆(统计) 人工智能 像素 深度学习 遥感 数据挖掘 土地利用 地质学 工程类 土木工程
作者
Shang Liu,Huadong Wang,Yuan Hu,Mengting Zhang,Yixuan Zhu,Zhibin Wang,Dongyang Li,Mingyang Yang,Fan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:12
标识
DOI:10.1109/tgrs.2023.3285912
摘要

With the advancement of geo-systems and the increased availability of satellite data, a plethora of Land-Use and Land-Cover (LULC) products have been developed. The existing LULC products primarily relied on time-series imagery to classify land by pixel-based classifiers, allowing for local analysis and accurate boundary detection. However, the advent of deep learning has shifted towards the use of patch-based CNN models for generating land cover maps. In this paper, (1) we create a training dataset for China using a voting strategy based on three off-the-shelf available LULC products, avoiding the labor-intensive manual annotation. (2) We design a novel CNN-based model for LULC task, called Multi-modal Fine-grained Dual Network (dubbed as Dual-Net), which takes dual-date images to generate final maps, and reduces the need for gap-free temporal sequences or separate cloud detection. To leverage the correlation between location, date, and category, we embed multi-modal information (dates and geo-locations) to the model. Further, by incorporating low-level constraints and using pseudo-label refinement, we continually improve the performance and achieve more refined segmentation. (3) Due to the lack of a suitable validation dataset for China, we create a new validation dataset called China Sentinel2 Validation Dataset (CSVD) by manually annotating 733 finely labeled images of 1024 × 1024 pixels of China-specific Sentinel2 data. (4) Extensive experiments demonstrate that our model outperforms existing LULC products and produces more fine-grained segmentation results comparable to other patch-based products. Finally, we release annual LULC maps for China in 2020-2022 and also make our model accessible online for real-time results export.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助木木采纳,获得10
刚刚
芬芬完成签到,获得积分10
刚刚
安安完成签到 ,获得积分10
1秒前
天天快乐应助初七123采纳,获得10
1秒前
2秒前
ding应助高大雁兰采纳,获得10
2秒前
3秒前
赘婿应助仙林AK47采纳,获得10
6秒前
qwepirt发布了新的文献求助10
6秒前
SciGPT应助啦啦采纳,获得10
6秒前
找文献呢发布了新的文献求助50
7秒前
8秒前
8秒前
NexusExplorer应助科研白小白采纳,获得10
12秒前
xiaoyu应助hyacinth采纳,获得10
12秒前
14秒前
晓兴兴发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助洗衣液采纳,获得10
17秒前
17秒前
18秒前
Betty完成签到,获得积分10
18秒前
感性的夜玉完成签到,获得积分10
19秒前
不如一默发布了新的文献求助10
19秒前
阴转晴完成签到,获得积分10
20秒前
qiaobaqiao完成签到 ,获得积分10
20秒前
20秒前
一目完成签到,获得积分10
20秒前
22秒前
22秒前
桐桐应助大胆的雪一采纳,获得10
22秒前
steven完成签到 ,获得积分10
23秒前
23秒前
25秒前
26秒前
weiwei发布了新的文献求助10
26秒前
天然应助没烦恼采纳,获得10
27秒前
单纯的寄风完成签到,获得积分20
28秒前
28秒前
睡觉睡觉发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461433
求助须知:如何正确求助?哪些是违规求助? 3055090
关于积分的说明 9046471
捐赠科研通 2745000
什么是DOI,文献DOI怎么找? 1505827
科研通“疑难数据库(出版商)”最低求助积分说明 695897
邀请新用户注册赠送积分活动 695293