已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring the shared gene signatures of smoking-related osteoporosis and chronic obstructive pulmonary disease using machine learning algorithms

慢性阻塞性肺病 Lasso(编程语言) 接收机工作特性 逻辑回归 微阵列 免疫系统 微阵列分析技术 基因表达谱 基因 基因表达 医学 计算生物学 免疫学 内科学 生物 计算机科学 遗传学 万维网
作者
Haotian Wang,Shaoshuo Li,Baixing Chen,Mao Wu,Heng Yin,Yang Shao,Jianwei Wang
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:10
标识
DOI:10.3389/fmolb.2023.1204031
摘要

Objectives: Cigarette smoking has been recognized as a predisposing factor for both osteoporosis (OP) and chronic obstructive pulmonary disease (COPD). This study aimed to investigate the shared gene signatures affected by cigarette smoking in OP and COPD through gene expression profiling. Materials and methods: Microarray datasets (GSE11784, GSE13850, GSE10006, and GSE103174) were obtained from Gene Expression Omnibus (GEO) and analyzed for differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) regression method and a random forest (RF) machine learning algorithm were used to identify candidate biomarkers. The diagnostic value of the method was assessed using logistic regression and receiver operating characteristic (ROC) curve analysis. Finally, immune cell infiltration was analyzed to identify dysregulated immune cells in cigarette smoking-induced COPD. Results: In the smoking-related OP and COPD datasets, 2858 and 280 DEGs were identified, respectively. WGCNA revealed 982 genes strongly correlated with smoking-related OP, of which 32 overlapped with the hub genes of COPD. Gene Ontology (GO) enrichment analysis showed that the overlapping genes were enriched in the immune system category. Using LASSO regression and RF machine learning, six candidate genes were identified, and a logistic regression model was constructed, which had high diagnostic values for both the training set and external validation datasets. The area under the curves (AUCs) were 0.83 and 0.99, respectively. Immune cell infiltration analysis revealed dysregulation in several immune cells, and six immune-associated genes were identified for smoking-related OP and COPD, namely, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), tissue-type plasminogen activator (PLAT), sodium channel 1 subunit alpha (SCNN1A), sine oculis homeobox 3 (SIX3), sperm-associated antigen 9 (SPAG9), and vacuolar protein sorting 35 (VPS35). Conclusion: The findings suggest that immune cell infiltration profiles play a significant role in the shared pathogenesis of smoking-related OP and COPD. The results could provide valuable insights for developing novel therapeutic strategies for managing these disorders, as well as shedding light on their pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
活泼的沅发布了新的文献求助10
3秒前
_shiy发布了新的文献求助10
6秒前
6秒前
Sunnpy完成签到 ,获得积分10
7秒前
Sunnpy发布了新的文献求助10
13秒前
科研通AI2S应助sukasuka采纳,获得10
18秒前
22秒前
可爱的函函应助荞麦面采纳,获得10
23秒前
ww完成签到,获得积分10
25秒前
蟹菌蚝完成签到 ,获得积分10
25秒前
夜漫雪发布了新的文献求助10
26秒前
27秒前
28秒前
29秒前
oceanao应助亚当寇克采纳,获得10
29秒前
天天快乐应助完美的一斩采纳,获得10
29秒前
散步的书包完成签到,获得积分10
30秒前
尉迟衣发布了新的文献求助10
32秒前
完美世界应助juan采纳,获得10
38秒前
随心完成签到 ,获得积分10
38秒前
orixero应助hhc采纳,获得10
41秒前
SciGPT应助尉迟衣采纳,获得10
41秒前
隐形曼青应助骑驴找马采纳,获得10
41秒前
42秒前
43秒前
荞麦面发布了新的文献求助10
46秒前
含蓄的明雪应助小猪琪琪采纳,获得10
46秒前
48秒前
oceanao应助苏小喵采纳,获得10
49秒前
MIUMIU发布了新的文献求助10
50秒前
www268完成签到 ,获得积分10
51秒前
Feifei133发布了新的文献求助10
52秒前
lurongjun发布了新的文献求助10
54秒前
59秒前
李健应助Feifei133采纳,获得10
1分钟前
sun发布了新的文献求助10
1分钟前
1分钟前
文武发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883043
捐赠科研通 2468315
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956