已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medium-term multi-stage distributionally robust scheduling of hydro–wind–solar complementary systems in electricity markets considering multiple time-scale uncertainties

数学优化 随机规划 计算机科学 调度(生产过程) 概率分布 整数规划 强对偶性 风力发电 运筹学 最优化问题 工程类 数学 统计 电气工程
作者
Zhuangzhuang Li,Ping Yang,Yi Guo,Guanpeng Lu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:347: 121371-121371
标识
DOI:10.1016/j.apenergy.2023.121371
摘要

Joint trading of hydro–wind–solar complementary systems (HWSCSs) in the electricity market (EM) helps to reduce the imbalance cost and increase profits. However, multiple energy resources and market price uncertainties affect the trading strategies. Existing medium-term (MT) scheduling approaches assume that the probability distribution of the random variable is perfectly known. Short-term variations were also ignored, which led to revenue loss and trading risk. To address the above issues, this paper proposes an MT multi-stage distributionally robust optimization (MDRO) scheduling approach for a price-taking HWSCS in the EM. Firstly, hourly unit commitment (HUC) constraints are incorporated into the MT scheduling model to accurately capture short-term variations. A novel ambiguity set is designed based on the modified chi-square distance to address probability distribution uncertainties at two different time scales. Subsequently, an MDRO scheduling model is proposed to optimize the trading strategy. Finally, the proposed MDRO model is converted to a large-scale multi-stage integer programming problem based on linearization and reformation. The stochastic dual dynamic integer programming algorithm is modified to ensure computational tractability. Xiluodu-Xiangjiaba HWSCS, located in the Jinsha River in China, was selected as a case study. The results show that: 1) the MDRO model is more robust to distributional uncertainties than the multi-stage stochastic programming (MSSP) model. When the probability distribution of the random variable changes, the MDRO model yields a higher expected revenue (+2.43%) and a lower standard deviation (-60.8%) of revenue, which illustrates lower trading risk. 2) Compared with MSSP, deterministic, two-stage stochastic programming, and distributionally robust optimization models, the MDRO model exhibits the best out-of-sample performance in terms of the highest expected revenue and lowest trading risk. 3) Incorporating HUC constraints into the MDRO model helps to increase the total revenue (+3.53%) and energy generation (+3.31%) at the expense of increasing the computational burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙东玥完成签到,获得积分10
1秒前
饱满的映天完成签到,获得积分10
2秒前
标致白晴发布了新的文献求助30
3秒前
斯寜完成签到,获得积分0
3秒前
6秒前
XUANNI完成签到,获得积分10
6秒前
在水一方应助低空飞行采纳,获得10
11秒前
ash_alice发布了新的文献求助10
12秒前
524完成签到,获得积分10
13秒前
15秒前
16秒前
xianyaoz完成签到 ,获得积分10
19秒前
低空飞行完成签到,获得积分10
20秒前
22秒前
低空飞行发布了新的文献求助10
22秒前
欣喜的诗筠完成签到 ,获得积分10
25秒前
25秒前
LZL完成签到 ,获得积分10
25秒前
517完成签到 ,获得积分10
27秒前
28秒前
gentleman完成签到,获得积分10
30秒前
小马甲应助任性的无色采纳,获得10
33秒前
言辞完成签到,获得积分10
34秒前
ymr完成签到 ,获得积分10
34秒前
风起枫落完成签到,获得积分10
35秒前
无题发布了新的文献求助10
36秒前
程君完成签到,获得积分10
37秒前
38秒前
hyPang完成签到,获得积分10
40秒前
李坤鹏完成签到 ,获得积分10
41秒前
笑点低的悒完成签到 ,获得积分10
41秒前
43秒前
sunyuhao发布了新的文献求助10
44秒前
无题完成签到,获得积分10
44秒前
JIN发布了新的文献求助10
46秒前
逮劳完成签到 ,获得积分10
47秒前
李坤鹏关注了科研通微信公众号
47秒前
DAKUMA发布了新的文献求助20
50秒前
刘国建郭菱香完成签到 ,获得积分10
52秒前
龅牙苏发布了新的文献求助20
55秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197833
求助须知:如何正确求助?哪些是违规求助? 4379025
关于积分的说明 13637476
捐赠科研通 4234845
什么是DOI,文献DOI怎么找? 2323025
邀请新用户注册赠送积分活动 1321090
关于科研通互助平台的介绍 1271903