清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Medium-term multi-stage distributionally robust scheduling of hydro–wind–solar complementary systems in electricity markets considering multiple time-scale uncertainties

数学优化 随机规划 计算机科学 调度(生产过程) 概率分布 整数规划 强对偶性 风力发电 运筹学 最优化问题 工程类 数学 统计 电气工程
作者
Zhuangzhuang Li,Ping Yang,Yi Guo,Guanpeng Lu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:347: 121371-121371
标识
DOI:10.1016/j.apenergy.2023.121371
摘要

Joint trading of hydro–wind–solar complementary systems (HWSCSs) in the electricity market (EM) helps to reduce the imbalance cost and increase profits. However, multiple energy resources and market price uncertainties affect the trading strategies. Existing medium-term (MT) scheduling approaches assume that the probability distribution of the random variable is perfectly known. Short-term variations were also ignored, which led to revenue loss and trading risk. To address the above issues, this paper proposes an MT multi-stage distributionally robust optimization (MDRO) scheduling approach for a price-taking HWSCS in the EM. Firstly, hourly unit commitment (HUC) constraints are incorporated into the MT scheduling model to accurately capture short-term variations. A novel ambiguity set is designed based on the modified chi-square distance to address probability distribution uncertainties at two different time scales. Subsequently, an MDRO scheduling model is proposed to optimize the trading strategy. Finally, the proposed MDRO model is converted to a large-scale multi-stage integer programming problem based on linearization and reformation. The stochastic dual dynamic integer programming algorithm is modified to ensure computational tractability. Xiluodu-Xiangjiaba HWSCS, located in the Jinsha River in China, was selected as a case study. The results show that: 1) the MDRO model is more robust to distributional uncertainties than the multi-stage stochastic programming (MSSP) model. When the probability distribution of the random variable changes, the MDRO model yields a higher expected revenue (+2.43%) and a lower standard deviation (-60.8%) of revenue, which illustrates lower trading risk. 2) Compared with MSSP, deterministic, two-stage stochastic programming, and distributionally robust optimization models, the MDRO model exhibits the best out-of-sample performance in terms of the highest expected revenue and lowest trading risk. 3) Incorporating HUC constraints into the MDRO model helps to increase the total revenue (+3.53%) and energy generation (+3.31%) at the expense of increasing the computational burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分0
6秒前
量子星尘发布了新的文献求助10
7秒前
19秒前
BinBlues完成签到,获得积分10
19秒前
24秒前
39秒前
vicky完成签到 ,获得积分10
54秒前
冷傲半邪完成签到,获得积分10
1分钟前
1分钟前
nuliguan完成签到 ,获得积分10
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zpc猪猪完成签到,获得积分10
2分钟前
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
003发布了新的社区帖子
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
Archer发布了新的文献求助10
6分钟前
彭于晏应助003采纳,获得10
6分钟前
6分钟前
003发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
Archer完成签到,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863