Medium-term multi-stage distributionally robust scheduling of hydro–wind–solar complementary systems in electricity markets considering multiple time-scale uncertainties

数学优化 随机规划 计算机科学 调度(生产过程) 概率分布 整数规划 强对偶性 风力发电 运筹学 最优化问题 工程类 数学 统计 电气工程
作者
Zhuangzhuang Li,Ping Yang,Yi Guo,Guanpeng Lu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:347: 121371-121371
标识
DOI:10.1016/j.apenergy.2023.121371
摘要

Joint trading of hydro–wind–solar complementary systems (HWSCSs) in the electricity market (EM) helps to reduce the imbalance cost and increase profits. However, multiple energy resources and market price uncertainties affect the trading strategies. Existing medium-term (MT) scheduling approaches assume that the probability distribution of the random variable is perfectly known. Short-term variations were also ignored, which led to revenue loss and trading risk. To address the above issues, this paper proposes an MT multi-stage distributionally robust optimization (MDRO) scheduling approach for a price-taking HWSCS in the EM. Firstly, hourly unit commitment (HUC) constraints are incorporated into the MT scheduling model to accurately capture short-term variations. A novel ambiguity set is designed based on the modified chi-square distance to address probability distribution uncertainties at two different time scales. Subsequently, an MDRO scheduling model is proposed to optimize the trading strategy. Finally, the proposed MDRO model is converted to a large-scale multi-stage integer programming problem based on linearization and reformation. The stochastic dual dynamic integer programming algorithm is modified to ensure computational tractability. Xiluodu-Xiangjiaba HWSCS, located in the Jinsha River in China, was selected as a case study. The results show that: 1) the MDRO model is more robust to distributional uncertainties than the multi-stage stochastic programming (MSSP) model. When the probability distribution of the random variable changes, the MDRO model yields a higher expected revenue (+2.43%) and a lower standard deviation (-60.8%) of revenue, which illustrates lower trading risk. 2) Compared with MSSP, deterministic, two-stage stochastic programming, and distributionally robust optimization models, the MDRO model exhibits the best out-of-sample performance in terms of the highest expected revenue and lowest trading risk. 3) Incorporating HUC constraints into the MDRO model helps to increase the total revenue (+3.53%) and energy generation (+3.31%) at the expense of increasing the computational burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
~心若芷萱~完成签到 ,获得积分10
刚刚
CodeCraft应助文艺的冬卉采纳,获得10
刚刚
haujiun完成签到 ,获得积分10
刚刚
无辜的笙完成签到,获得积分10
1秒前
spring完成签到 ,获得积分10
2秒前
2秒前
2秒前
yznfly应助tuya采纳,获得40
2秒前
doudou完成签到,获得积分10
3秒前
正直涵菱完成签到 ,获得积分10
3秒前
3秒前
三三四发布了新的文献求助10
3秒前
jy发布了新的文献求助10
3秒前
mysci完成签到,获得积分10
4秒前
erdongsir发布了新的文献求助10
4秒前
ZJJ静完成签到,获得积分10
4秒前
学术学习发布了新的文献求助10
5秒前
头号玩家完成签到,获得积分10
5秒前
林慕然2023发布了新的文献求助10
5秒前
小马甲应助执意采纳,获得10
5秒前
椰子狗完成签到,获得积分10
5秒前
6秒前
江小美发布了新的文献求助10
6秒前
高手如林完成签到,获得积分10
6秒前
sxqt完成签到,获得积分10
7秒前
7秒前
热舞特发布了新的文献求助80
7秒前
外向行云发布了新的文献求助10
7秒前
7秒前
李健的粉丝团团长应助LS采纳,获得10
7秒前
摸鱼校尉完成签到,获得积分0
8秒前
852应助白阳采纳,获得10
8秒前
hzwyyds应助HQQ采纳,获得10
8秒前
京城世界完成签到,获得积分10
8秒前
Ava应助meiqiu采纳,获得10
9秒前
心灵美孤菱完成签到,获得积分10
9秒前
嫏嬛完成签到,获得积分10
9秒前
liyk完成签到,获得积分10
9秒前
10秒前
Aimee完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478