How to Retrain Recommender System?

再培训 计算机科学 过度拟合 推荐系统 遗忘 人工智能 机器学习 数据建模 学习迁移 期限(时间) 忠诚 组分(热力学) 人工神经网络 数据库 哲学 业务 物理 热力学 国际贸易 电信 量子力学 语言学
作者
Yang Zhang,Fuli Feng,Chenxu Wang,Xiangnan He,Meng Wang,Yan Li,Yongdong Zhang
标识
DOI:10.1145/3397271.3401167
摘要

Practical recommender systems need be periodically retrained to refresh the model with new interaction data. To pursue high model fidelity, it is usually desirable to retrain the model on both historical and new data, since it can account for both long-term and short-term user preference. However, a full model retraining could be very time-consuming and memory-costly, especially when the scale of historical data is large. In this work, we study the model retraining mechanism for recommender systems, a topic of high practical values but has been relatively little explored in the research community. Our first belief is that retraining the model on historical data is unnecessary, since the model has been trained on it before. Nevertheless, normal training on new data only may easily cause overfitting and forgetting issues, since the new data is of a smaller scale and contains fewer information on long-term user preference. To address this dilemma, we propose a new training method, aiming to abandon the historical data during retraining through learning to transfer the past training experience. Specifically, we design a neural network-based transfer component, which transforms the old model to a new model that is tailored for future recommendations. To learn the transfer component well, we optimize the "future performance" -- i.e., the recommendation accuracy evaluated in the next time period. Our Sequential Meta-Learning(SML) method offers a general training paradigm that is applicable to any differentiable model. We demonstrate SML on matrix factorization and conduct experiments on two real-world datasets. Empirical results show that SML not only achieves significant speed-up, but also outperforms the full model retraining in recommendation accuracy, validating the effectiveness of our proposals. We release our codes at: https://github.com/zyang1580/SML.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丹丹完成签到,获得积分10
刚刚
一只鱼完成签到,获得积分10
刚刚
纸飞机发布了新的文献求助10
刚刚
刚刚
Zing完成签到,获得积分10
1秒前
iwonder发布了新的文献求助10
1秒前
贺贺完成签到,获得积分10
1秒前
1秒前
HOAN应助even采纳,获得30
1秒前
1秒前
学术黄金完成签到,获得积分10
2秒前
2秒前
JamesPei应助橘子小狗采纳,获得10
2秒前
2秒前
wang发布了新的文献求助10
3秒前
3秒前
wanci应助小冰采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
大个应助bling采纳,获得10
4秒前
雨且青发布了新的文献求助10
4秒前
wwk发布了新的文献求助10
4秒前
星苒完成签到,获得积分20
5秒前
Merciful完成签到 ,获得积分10
5秒前
洪艳完成签到,获得积分10
6秒前
身柏关注了科研通微信公众号
6秒前
7秒前
7秒前
研友_VZG7GZ应助橙子采纳,获得10
7秒前
yy发布了新的文献求助10
7秒前
7秒前
轻松囧发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Akim应助何小芳采纳,获得10
9秒前
星苒发布了新的文献求助10
9秒前
炙热百川发布了新的文献求助10
10秒前
无敌咖啡豆完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807