吸附
环境科学
Mercury(编程语言)
乙二醇
水处理
环境工程
环境友好型
饮用水净化
废物管理
环境化学
化学
制浆造纸工业
有机化学
工程类
生态学
生物
计算机科学
程序设计语言
作者
Meng Li,Bowen Liu,Hongmin Guo,Haotian Wang,Quanyu Shi,Mengwen Xu,Mengqing Yang,Xubiao Luo,Lidong Wang
标识
DOI:10.1021/acs.est.2c03033
摘要
With the fast development of modern industries, scarcity of freshwater resources caused by heavy metal pollution (i.e., Hg2+) has become a severe issue for human beings. Herein, a 3D-MoS2 sponge as an excellent absorbent is fabricated for mercury removal due to its multidimensional adsorption pathways, which decreases the biomagnification effect of methylmercury in water bodies. Furthermore, a secondary water purification strategy is employed to harvest drinkable water with the exhausted adsorbents, thus alleviating the crisis of drinking water shortage. Compared to the conventional landfill treatment, the exhausted MoS2 sponge absorbents are further functionalized with a poly(ethylene glycol) (PEG) layer to prevent the heavy metals from leaking and enhance the hydrophilicity for photothermal conversion. The fabricated evaporator displays excellent evaporation rates of ∼1.45 kg m–2 h–1 under sunlight irradiation and produces freshwater with Hg2+ under the WHO drinking water standard at 0.001 mg L–1. These results not only assist in avoiding the biodeposition effect of mercury in water but also provide an environment-friendly strategy to recycle hazardous adsorbents for water purification.
科研通智能强力驱动
Strongly Powered by AbleSci AI