已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method

模式识别(心理学) 人工智能 计算机科学 脑电图 系列(地层学) 特征选择 选择(遗传算法) 傅里叶变换 语音识别 主题(文档) 特征(语言学) 小波变换 贝塞尔函数 小波 数据挖掘 数学 地质学 数学分析 哲学 精神科 古生物学 语言学 图书馆学 心理学
作者
Arti Anuragi,Dilip Singh Sisodia,Ram Bilas Pachori
出处
期刊:Information Sciences [Elsevier]
卷期号:610: 508-524 被引量:30
标识
DOI:10.1016/j.ins.2022.07.121
摘要

Automated emotion recognition using brain electroencephalogram (EEG) signals is predominantly used for the accurate assessment of human actions as compared to facial expression or speech signals. Various signal processing methods have been used for extracting representative features from EEG signals for emotion recognition. However, the EEG signals are non-stationary and vary across the subjects as well as in different sessions of the same subject; hence it exhibits poor generalizability and low classification accuracy for an emotion classification of cross subjects. In this paper, EEG signals-based automated cross-subject emotion recognition framework is proposed using the Fourier-Bessel series expansion-based empirical wavelet transform (FBSE-EWT) method. This method is used to decompose the EEG signals from each channel into four sub-band signals. Manually ten channels are selected from the frontal lobe, from which entropy and energy features are extracted from each sub-band signal. The subject variability is reduced using an average moving filter method on each channel to obtain the smoothened feature vector of size 80. The three feature selection techniques, such as neighborhood component analysis (NCA), relief-F, and mRMR , are used to obtain an optimal feature vector. The machine learning models, such as artificial neural network (ANN), k -nearest neighborhood ( k -NN) with two (fine and weighted) functions, and ensemble bagged tree classifiers are trained by the obtained feature vectors. The experiments are performed on two publicly accessible databases, named SJTU emotion EEG dataset (SEED) and dataset for emotion analysis using physiological signals (DEAP). The training and testing of the models have been performed using 10-fold cross-validation and leave-one-subject-out-cross-validation (LOSOCV). The proposed framework based on FBSE-EWT and NCA feature selection approach shows superior results for classifying human emotions compared to other state-of-art emotion classification models .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leslie发布了新的文献求助10
1秒前
3秒前
我是老大应助阳佟听荷采纳,获得10
6秒前
Bo发布了新的文献求助10
7秒前
良良丸完成签到 ,获得积分10
8秒前
领导范儿应助歇歇采纳,获得10
11秒前
14秒前
852应助科研通管家采纳,获得10
14秒前
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
刻苦奇异果完成签到 ,获得积分10
15秒前
15秒前
18秒前
20秒前
bkagyin应助HHH采纳,获得10
20秒前
土豪的紫荷完成签到 ,获得积分10
22秒前
24秒前
ZJX发布了新的文献求助10
25秒前
25秒前
丁德乐可发布了新的文献求助10
26秒前
26秒前
xy完成签到,获得积分10
29秒前
HHH发布了新的文献求助10
30秒前
快乐的如风完成签到,获得积分10
30秒前
阳佟听荷发布了新的文献求助10
30秒前
jjffsong发布了新的文献求助10
32秒前
Cccsy完成签到,获得积分10
32秒前
32秒前
li完成签到,获得积分10
32秒前
卟卟高升完成签到 ,获得积分10
34秒前
李爱国应助ZJX采纳,获得10
37秒前
jjffsong完成签到,获得积分20
39秒前
冷静芹菜完成签到 ,获得积分10
39秒前
PAIDAXXXX完成签到,获得积分10
42秒前
42秒前
抠鼻公主完成签到 ,获得积分10
42秒前
43秒前
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516206
求助须知:如何正确求助?哪些是违规求助? 3098515
关于积分的说明 9239788
捐赠科研通 2793547
什么是DOI,文献DOI怎么找? 1533124
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359