亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Selective fruit harvesting: Research, trends and developments towards fruit detection and localization – A review

计算机科学 人工智能 质量(理念) 机器视觉 机器人学 经济短缺 深度学习 机器人 农业工程 工程类 语言学 认识论 哲学 政府(语言学)
作者
Meenakshi Suresh Kumar,Santhakumar Mohan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:237 (6): 1405-1444 被引量:1
标识
DOI:10.1177/09544062221128443
摘要

Progressive application of multidisciplinary research and development pushes the evolution of automation in many subsectors of agriculture to increase productivity, economic growth and environmental preservation with the help of robotics and artificial intelligence. Fruit harvesting robots have been developed mainly to provide support in the field for limited labour resources, to enable selective harvesting, to improve the efficiency and to preserve the quality of fruits. Even a small delay in harvesting can cause a maximum impact to the quality of the fruit. Selective fruit harvesting is an integration of different subcomponents. This paper provides a brief analysis of the techniques in selective fruit harvesting for the past 6 years starting from 2017 to 2022, associated principles, limitations and directions for future challenges. The first subcomponent is the vision system, it captures the information about the fruit in a tree canopy to perform efficient 2D and 3D localization. Hence getting accurate information from the vision system is more essential even in a complex agricultural environment. The detection of fruit from the vision system is normally done with two major methods such as traditional image processing and deep learning approaches. The result shows that the traditional methods provide high efficiency but the colour similarity, complex backgrounds and lightning conditions often makes failure in detection. Shortage of standard dataset and high-powered processing devices hinders the development of deep learning algorithms. Also, the usage of large data sets reduces the training speed even in pre-trained networks. For fruit grasping and detachment, the detection of plucking point is more essential to preserve the quality and for further storage. The elaborate description about the framework, limitations in current sensing, fruit and picking point detection algorithms provides guidelines to the researchers in building a fully automated robotic system to increase the processing speed and production rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
顾矜应助科研通管家采纳,获得10
4秒前
爱静静应助科研通管家采纳,获得10
4秒前
寻道图强应助科研通管家采纳,获得30
4秒前
汉堡包应助田柾国采纳,获得10
4秒前
天降发布了新的文献求助10
8秒前
9秒前
Raunio完成签到,获得积分10
16秒前
斯文败类应助天降采纳,获得10
18秒前
衣裳薄完成签到,获得积分10
20秒前
Hobby完成签到,获得积分10
21秒前
27秒前
Raunio发布了新的文献求助30
27秒前
Garry应助认真的新筠采纳,获得10
31秒前
浑灵安完成签到 ,获得积分10
32秒前
田柾国发布了新的文献求助10
32秒前
35秒前
小凯完成签到 ,获得积分10
41秒前
丘比特应助季1采纳,获得30
52秒前
Wish完成签到,获得积分10
57秒前
1分钟前
捉住一只羊完成签到 ,获得积分10
1分钟前
霉小欧给柯尔特的求助进行了留言
1分钟前
二牛完成签到,获得积分10
1分钟前
1分钟前
kai chen完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
彭于晏应助二三采纳,获得10
1分钟前
1分钟前
LAN完成签到,获得积分10
1分钟前
季1发布了新的文献求助30
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
jfuU发布了新的文献求助10
2分钟前
山南水北发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126036
求助须知:如何正确求助?哪些是违规求助? 2776256
关于积分的说明 7729636
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292200
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392