Optimal selection of vehicle types for an electric bus route with shifting departure times

公共交通 调度(生产过程) 计算机科学 负荷系数 营业成本 电动汽车 代用燃料汽车 数学优化 汽车工程 运筹学 运输工程 柴油 工程类 功率(物理) 数学 航空航天工程 物理 废物管理 量子力学 替代燃料
作者
Chunyan Tang,Ying-En Ge,He Xue,Avishai Ceder,Xiaokun Wang
出处
期刊:International Journal of Sustainable Transportation [Taylor & Francis]
卷期号:17 (11): 1217-1235 被引量:10
标识
DOI:10.1080/15568318.2022.2161079
摘要

Transition to electrified transit vehicles has attracted a great public attention to achieve a greener public transport service. This work develops a methodology for multi-type electric buses (EBs) accommodating spatio-temporally imbalanced passenger demand to improve significantly the operating efficiency. However, a new complexity of this multi-type EB scheme in contrast to conventional diesel buses occurs because multi-type EBs are characterized by different capacities, limited driving ranges, decisions on recharging time and/or locations and high initial investment costs. This work proposes a new, integrated timetabling and vehicle scheduling problem with shifting departure time to attain an even-load timetable using different types of EBs at a route's max-load stop, considering the use of fast/opportunity charging strategy. A genetic algorithm associated with right shifting of departure time has been developed to solve the resulting formulation, which is shown to be an NP-hard problem. A numerical example is used to illustrate the developed methodology, and a case study based on a scenario in the city of Dandong, China shows that the scheme of combining multiple vehicle types for a bus route not only can reduce the total cost but also bring out greater benefits than the single vehicle-type operation. From the operator viewpoint, it reduces passenger load surplus cost by approximately 11.2% for small Type A and 14.8% for large Type B. Moreover, the value of leftover pax unit cost has a significant effect on the selection of vehicle types, but has little effect on the number of trips or departures. This work shows that the higher the leftover pax unit cost is, the higher the number of large vehicle types is.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕寄风完成签到,获得积分0
1秒前
冉冉发布了新的文献求助10
3秒前
执着又蓝发布了新的文献求助20
3秒前
Rondab应助rrr采纳,获得10
3秒前
sjx1116完成签到 ,获得积分10
4秒前
Akim应助杜兰特工队采纳,获得10
7秒前
7秒前
8秒前
冉冉完成签到,获得积分10
10秒前
MTRQ给MTRQ的求助进行了留言
11秒前
面壁思过完成签到,获得积分10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Liufgui应助科研通管家采纳,获得10
13秒前
Bio应助科研通管家采纳,获得30
13秒前
MchemG应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
天天快乐应助roy采纳,获得10
16秒前
16秒前
rrr完成签到,获得积分10
18秒前
water完成签到,获得积分10
19秒前
Sea_U发布了新的文献求助10
21秒前
执着又蓝完成签到,获得积分20
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
26秒前
29秒前
Sea_U完成签到,获得积分0
29秒前
坤坤完成签到,获得积分10
30秒前
彭于晏应助zwy109采纳,获得10
30秒前
小星星完成签到,获得积分20
30秒前
钱罐罐发布了新的文献求助10
31秒前
科研通AI5应助整齐百褶裙采纳,获得10
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068